← 返回
一种平衡划分方法及其在电网分布式状态估计中的应用
A Balanced Partitioning Method and Its Application on Distributed State Estimation in Power Grids
| 作者 | Xue Li · Tengfei Zhang · Zhe Zhou |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 分布式状态估计 电网分区方法 多目标适应度模型 改进粒子群算法 分区质量保证机制 |
语言:
中文摘要
电网划分方法的性能对分布式状态估计(DSE)效果具有重要影响。现有方法在保证划分质量与网络连通性的同时难以实现节点分布均衡,易导致资源利用率低和估计精度下降。本文提出一种新型平衡电网划分方法,构建融合电气模块度、节点分布均衡因子与划分密度影响因子的多目标适应度模型,以兼顾划分均衡性与电网连通性。针对非凸离散优化问题,采用结合图论与谱聚类的改进粒子群算法提升解的多样性与收敛速度,并设计划分质量保障机制以自动检测并重分配孤立节点。数值分析与多场景对比实验验证了该方法的有效性,应用于DSE时显著提升了估计精度。
English Abstract
The performance of grid partitioning methods has a significant impact on the results of distributed state estimation (DSE). Most existing grid partitioning methods struggle to balance node distribution while maintaining partition quality and network connectivity, which may lead to low resource utilization and reduced accuracy in DSE. This paper proposes a novel balanced grid partitioning method, aiming to promote effective DSE. To ensure partition balance and grid connectivity, a multiobjective fitness model for partitioning is formulated based on the correlation of electrical modularity, node distribution balance factor and partition density influence factor. The grid partitioning problem is a non-convex discrete optimization problem. To obtain a solution, an improved particle swarm optimization algorithm is employed, incorporating graph theory and spectral clustering to enhance solution diversity and accelerate convergence speed. To address the vulnerability of large-scale grid partitioning to topological connectivity, a partition quality assurance mechanism is proposed to automatically detect and reassign outlier nodes. Numerical analysis validates the method's effectiveness, including multidimensional performance evaluation and comparative experiments with multiple power grid partitioning cases. Further simulation results when applied to a DSE scenario demonstrate significant advantages in the accuracy of the proposed scheme by comparing to existing schemes in the literature.
S
SunView 深度解读
该平衡划分方法对阳光电源分布式储能系统具有重要应用价值。在PowerTitan大型储能系统和多站点ESS集成方案中,可优化分布式能量管理系统(EMS)的状态估计精度,实现储能单元间负载均衡与协同控制。该方法的多目标适应度模型可应用于iSolarCloud云平台的分布式监控架构,提升光储电站群的状态感知能力。对于ST系列储能变流器的并联运行场景,该算法能优化通信拓扑划分,降低控制延迟,提高系统可靠性。其节点均衡分配机制可启发阳光电源在微网控制器设计中实现计算资源优化配置,增强构网型GFM控制的分布式协同性能,特别适用于大规模新能源场站的实时状态估计与故障诊断。