← 返回
电动汽车驱动
★ 4.0
基于随机交互图与特征分析的连锁故障分析与缓解
Analysis and Mitigation of Cascading Failures Using a Stochastic Interaction Graph With Eigen-Analysis
| 作者 | Zhenping Guo · Xiaowen Su · Kai Sun · Byungkwon Park · Srdjan Simunovic |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年7月 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 复杂网络系统 级联故障 随机交互图模型 特征分析 缓解策略 |
语言:
中文摘要
在复杂网络系统研究中,通常基于无向图模型进行特征分析。然而,在电力系统连锁故障分析中,故障间的相互作用具有方向性,需引入有向图以刻画故障传播路径。为此,本文提出一种随机交互图模型及其特征分析方法。通过定义并分析随机交互矩阵的特征值模式(其模为1、0或介于两者之间),可识别局部或大范围的故障传播模式及关键参与元件。利用特征向量识别广泛传播模式中的关键组件,并降低其故障概率,从而有效抑制连锁故障。在NPCC 140节点系统上的仿真数据验证了所提模型与策略的有效性。
English Abstract
In studies on complex network systems using graph theory, eigen-analysis is typically performed on an undirected graph model of the network. However, when analyzing cascading failures in a power system, the interactions among failures suggest the need for a directed graph beyond the topology of the power system to model directions of failure propagation. To accurately quantify failure interactions for effective mitigation strategies, this paper proposes a stochastic interaction graph model and associated eigen-analysis. Different types of modes on failure propagations are defined and characterized by the eigenvalues of a stochastic interaction matrix, whose absolute values are unity, zero, or in between. Finding and interpreting these modes helps identify the probable patterns of failure propagation, either local or widespread, and the participating components based on eigenvectors. Then, by lowering the failure probabilities of critical components highly participating in a mode of widespread failures, cascading can be mitigated. The validity of the proposed stochastic interaction graph model, eigen-analysis and the resulting mitigation strategies is demonstrated using simulated cascading failure data on an NPCC 140-bus system.
S
SunView 深度解读
该随机交互图与特征分析技术对阳光电源大型储能系统和微电网产品具有重要应用价值。在PowerTitan储能系统集成中,可建立储能单元、PCS变流器、升压变压器间的故障传播有向图模型,通过特征值分析识别关键薄弱环节,优化冗余配置策略。对于多机并联的ST系列储能变流器,该方法可量化单机故障向系统扩散的风险路径,指导构网型GFM控制的协调保护策略设计。在iSolarCloud智能运维平台中,可集成该算法实现光储电站的连锁故障预测与预防性维护,通过降低关键节点故障概率提升系统可靠性,特别适用于百兆瓦级储能电站的安全防护体系构建。