← 返回
储能系统技术 多物理场耦合 ★ 5.0

正则化Benders分解在高性能容量扩展模型中的应用

Regularized Benders Decomposition for High Performance Capacity Expansion Models

作者 Filippo Pecci · Jesse D. Jenkins
期刊 IEEE Transactions on Power Systems
出版日期 2025年1月
技术分类 储能系统技术
技术标签 多物理场耦合
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电力容量扩展模型 Benders分解 计算性能 正则化方案 规划决策
语言:

中文摘要

本文研究电力容量扩展模型,该模型通过最小化投资与运行成本来优化投资与退役决策。为支持规划与政策制定,模型需包含详细的运行约束、时序耦合条件、多种气象与需求情景,并考虑离散的投资决策,导致大规模混合整数优化问题,难以被通用求解器处理。为此,本文采用定制化的Benders分解方法,适用于多阶段、随机运行场景、时序政策约束及多日储能与水库水电资源的复杂模型。通过多个案例研究评估了多种水平集正则化策略以加速收敛,结果表明,选择可行域内部规划决策的正则化方案性能优越,显著提升高分辨率混合整数规划问题的计算效率。

English Abstract

We consider electricity capacity expansion models, which optimize investment and retirement decisions by minimizing both investment and operation costs. In order to provide credible support for planning and policy decisions, these models need to include detailed operations and time-coupling constraints, consider multiple possible realizations of weather-related parameters and demand data, and allow modeling of discrete investment and retirement decisions. Such requirements result in large-scale mixed-integer optimization problems that are intractable with off-the-shelf solvers. Hence, practical solution approaches often rely on carefully designed abstraction techniques to find the best compromise between reduced computational burden and model accuracy. Benders decomposition offers scalable approaches to leverage distributed computing resources and enable models with both high resolution and computational performance. In this study, we implement a tailored Benders decomposition method for large-scale capacity expansion models with multiple planning periods, stochastic operational scenarios, time-coupling policy constraints, and multi-day energy storage and reservoir hydro resources. Using multiple case studies, we also evaluate several level-set regularization schemes to accelerate convergence. We find that a regularization scheme that selects planning decisions in the interior of the feasible set shows superior performance compared to previously published methods, enabling high-resolution, mixed-integer planning problems with unprecedented computational performance.
S

SunView 深度解读

该正则化Benders分解算法对阳光电源PowerTitan储能系统和iSolarCloud云平台具有重要应用价值。在新能源电站容量规划中,该方法可高效求解包含ST储能变流器、SG光伏逆变器的混合整数优化问题,处理多日储能时序耦合约束和多气象场景。具体可应用于:1)PowerTitan储能系统的容量配置优化,平衡投资与运行成本;2)iSolarCloud平台的智能规划模块,支持光储一体化电站的扩容决策;3)多能互补项目中储能与光伏的协同优化。该算法的高性能特性可显著提升阳光电源EPC项目的规划效率,为客户提供更经济的系统配置方案,增强市场竞争力。