← 返回
基于自适应线性潮流模型的交流网络约束机组组合
AC Network-Constrained Unit Commitment Based on Adaptive Linear Power Flow Model
| 作者 | Jiarui Long · Zhifang Yang · Yuming Liu · Mingxu Xiang · Juan Yu |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年8月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 网络约束机组组合 自适应线性潮流模型 模型规模缩减 线性化误差 运行成本 |
语言:
中文摘要
网络约束机组组合(UC)通常采用交流约束的线性近似以保证求解效率,但现有线性化方法难以应对机组启停导致的运行工况变化及交流可行性恢复问题,且近似精度依赖于工况与初始点的接近程度。本文提出一种基于自适应线性潮流模型的UC方法,将运行工况按机组状态、负荷水平和拓扑划分为多个区域,并引入辅助二元变量实现区域及对应最优线性模型的自适应选择。通过识别对UC精度影响显著的关键支路并仅在这些支路上应用自适应模型,有效降低计算负担。在多个标准测试系统及中国某省级电网中的验证表明,该方法显著减少支路有功/无功潮流和节点电压幅值/相角的线性化误差,提升交流可行性和经济性。
English Abstract
Network-constrained unit commitment (UC) problem typically uses a linear approximation of AC constraints to guarantee solution efficiency. However, the key difficulty current linearization methods face is that the change of UC status forms wide operating conditions and AC feasibility recovery. Meanwhile, the accuracy of linear approximation greatly depends on the closeness between the operating condition and initial points. To solve this problem, this paper proposes a network-constrained UC solution based on adaptive linear power flow model. The proposed method splits the operating conditions into several regions considering unit status, load profile, and topology. In the UC model, an auxiliary binary variable is introduced to represent the adaptive selection of region and corresponding best-fit linear power flow model. In addition, to reduce the computational burden, this paper presents a model-scale reduction method via identifying the critical branches that have a major influence on UC accuracy. By only using adaptive model for critical branches, the improvement of UC solution is achieved with an acceptable computational burden. The performance of proposed method is verified in several standard test systems and a provincial power grid in China. It shows that the proposed method can reduce the linearization errors of branch active/reactive power flow and bus voltage magnitude/phase by up to 48.01%, 45.83%, 40.58%, and 51.15% compared with existing UC methods, respectively. The AC-feasible solution of the proposed method achieves a reduction in constraint violations and a saving in operation costs.
S
SunView 深度解读
该自适应线性潮流模型对阳光电源PowerTitan大型储能系统和iSolarCloud智能运维平台具有重要应用价值。在源网荷储协调优化场景中,储能系统的充放电调度需考虑电网潮流约束,该方法通过自适应区域划分和关键支路识别,可显著提升ST系列储能变流器参与电网调度的决策精度和计算效率。特别适用于省级电网级储能电站的日前/日内优化调度,能在保证交流可行性前提下实现更优经济性。该技术可集成至iSolarCloud平台的智能调度模块,为构网型GFM储能系统提供精准的功率指令,减少因潮流约束违反导致的调度偏差,提升新能源消纳能力和电网支撑性能。