← 返回
保持结构的非线性微分代数方程电力网络模型降阶
Structure-Preserving Model Order Reduction for Nonlinear DAE Models of Power Networks
| 作者 | Muhammad Nadeem · Ahmad F. Taha |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年11月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 电力网络 微分代数方程 模型降阶 动态状态 代数状态 |
语言:
中文摘要
本文研究电力网络非线性微分代数方程(NDAE)模型中动态与代数状态的联合降阶。现有电力系统模型降阶方法多忽略代数约束,采用常微分方程(ODE)建模,仅降阶动态状态而保留全部代数变量,导致系统规模与复杂度未被充分降低。本文提出一种直接面向NDAE结构的降阶方法,无需系统线性化或转化为等效ODE模型,确保降阶后模型仍保持原系统的微分代数结构,并能同时高效压缩动态与代数变量,显著降低系统阶数的同时维持高精度。2000节点系统的仿真验证了该方法的有效性。
English Abstract
This paper deals with the joint reduction of the number of dynamic and algebraic states of a nonlinear differential-algebraic equation (NDAE) model of a power network. The dynamic states depict the internal states of generators, loads, renewables, whereas the algebraic ones define network states such as voltages and phase angles. In the current literature of power system model order reduction (MOR), the algebraic constraints are usually neglected and the power network is commonly modeled via a set of ordinary differential equations (ODEs) instead of NDAEs. Thus, reduction is usually carried out for the dynamic states only and the algebraic variables are kept intact. This leaves a significant part of the system's size and complexity unreduced. This paper addresses this aforementioned limitation by jointly reducing both dynamic and algebraic variables. As compared to the literature the proposed MOR techniques are endowed with the following features: (i) no system linearization is required, (ii) require no transformation to an equivalent or approximate ODE representation, (iii) guarantee that the reduced order model to be NDAE-structured and thus preserves the differential-algebraic structure of original power system model, and (iv) can seamlessly reduce both dynamic and algebraic variables while maintaining high accuracy. Case studies performed on a 2000-bus power system reveal that the proposed MOR techniques are able to reduce system order while maintaining accuracy.
S
SunView 深度解读
该NDAE降阶方法对阳光电源大型储能系统(PowerTitan)和多机并联逆变器系统具有重要应用价值。在ST系列储能变流器集群控制中,可将数百台设备的微分代数方程模型同时降阶动态状态(电流、电压)和代数约束(功率平衡),显著提升实时仿真与优化控制效率。对于构网型GFM控制策略开发,该方法能保持系统拓扑结构的同时压缩模型规模,加速暂态稳定性分析和参数整定。在iSolarCloud平台的数字孪生应用中,可实现大规模新能源场站的快速建模与预测性维护,降低计算资源需求,提升云端智能诊断响应速度。