← 返回
储能系统技术 储能系统 ★ 5.0

基于LCC-HVDC系统的双端一次频率支撑与交流电压调节

Bilateral Primary Frequency Support and AC Voltage Regulation of LCC-HVDC Systems for Asynchronously Interconnected Systems

作者 Zhixuan Li · Ying Xue · Yiping Chen · Nan Chen · Conghuan Yang · Jiyu Huang
期刊 IEEE Transactions on Power Systems
出版日期 2024年11月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 高压直流输电系统 协调控制方法 双向频率支持 交流电压调节 频率响应模型
语言:

中文摘要

现代电力系统对电网灵活性要求日益提高。由于交流输电线路不可控,传输系统的灵活性主要依赖于高压直流(HVDC)系统的主动控制,尤其是主流的电网换相换流器型(LCC-HVDC)系统。现有LCC-HVDC控制方法难以在提供双向频率支撑的同时维持交流电压稳定。为此,本文提出一种协调控制策略,实现异步互联系统下的双端频率支撑与交流电压调节。通过建立包含送端与受端系统频率耦合动态的低阶频率响应模型,量化频率支撑水平,并解析计算控制器参数,确保本地频率响应能力的同时不损害远端系统的频率稳定性。实时仿真验证了所提方法的有效性。

English Abstract

Modern power systems require significant grid flexibility. As the AC transmission lines are passive and cannot be controlled, grid flexibility in the transmission system can only be provided by actively controlling High-Voltage Direct Current (HVDC) systems, particularly the dominant LCC-HVDC systems. Although grid-flexibility support using LCC-HVDC has been studied, existing methods fail to achieve bidirectional frequency support while maintaining AC voltage. Therefore, a coordinated control method is proposed for the LCC-HVDC system to achieve bilateral frequency support (BFS) and AC voltage regulation (AVR) for asynchronously interconnected systems. The level of frequency support and the coupled dynamics of sending-end (SE) and receiving-end (RE) system frequencies are quantified by the developed low-order frequency response model, different from frequency models in previous research for only one end of the system. With the developed model, the control parameters of the proposed method are analytically calculated. This ensures an appropriate level of primary frequency support without jeopardizing the frequency response of the system at the remote end. The effectiveness of the proposed method is demonstrated through real-time simulation.
S

SunView 深度解读

该LCC-HVDC双端频率支撑技术对阳光电源储能系统具有重要参考价值。文中提出的频率-电压协调控制策略可直接应用于PowerTitan大型储能系统的电网支撑功能:通过建立低阶频率响应模型量化支撑能力,可优化ST系列储能变流器的构网型GFM控制算法,实现双向频率调节与电压稳定的协同。特别是其解析化参数设计方法,可增强阳光储能系统在弱电网场景下的本地频率响应能力,同时避免对远端电网造成负面影响。该技术思路可融入iSolarCloud平台的智能调度策略,提升新能源电站的电网友好性与辅助服务能力,符合现代电力系统灵活性需求。