← 返回
大规模风电场的模型降阶:一种数据驱动方法
Model Order Reduction of Large-Scale Wind Farms: A Data-Driven Approach
| 作者 | Zilong Gong · Junyu Mao · Adrià Junyent-Ferré · Giordano Scarciotti |
| 期刊 | IEEE Transactions on Power Systems |
| 出版日期 | 2024年12月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 多物理场耦合 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 大规模风电场 模型降阶 数据驱动算法 降阶模型 双端矩匹配 |
语言:
中文摘要
本文提出了一种针对大规模风电场的模型降阶(MOR)数据驱动算法,并研究了降阶模型(ROM)接入电网后的动态影响。相比传统MOR方法,该算法计算复杂度低,且无需高阶模型的先验知识。利用时域测量数据,所获ROM在选定插值点(频率)处满足矩匹配条件。与现有方法相比,本方法实现了所谓的双边矩匹配,通过加倍插值点数量使精度显著提升。算法在包含200台风电机组的风电场与IEEE 14节点系统的互联模型上验证,通过Bode图、特征值及故障工况下公共连接点电压的对比,验证了降阶模型的有效性。
English Abstract
This paper proposes a data-driven algorithm for model order reduction (MOR) of large-scale wind farms and studies the effects that the obtained reduced-order model (ROM) has when this is integrated into the power grid. With respect to standard MOR methods, the proposed algorithm has the advantages of having low computational complexity and not requiring any knowledge of the high order model. Using time-domain measurements, the obtained ROM achieves the moment matching conditions at selected interpolation points (frequencies). With respect to the state of the art, the method achieves the so-called two-sided moment matching, doubling the accuracy by doubling the interpolated points. The proposed algorithm is validated on a combined model of a 200-turbine wind farm (which is reduced) interconnected to the IEEE 14-bus system (which represents the unreduced study area) by comparing the full-order model and the reduced-order model in terms of their Bode plots, eigenvalues and the point of common coupling voltages in extensive fault scenarios of the integrated power system.
S
SunView 深度解读
该数据驱动的风电场模型降阶技术对阳光电源的大型储能和光伏产品具有重要参考价值。特别是对PowerTitan储能系统和大型地面电站的并网控制,可借鉴其双边矩匹配算法优化系统建模精度。这种低计算复杂度的建模方法有助于提升iSolarCloud平台对大规模新能源场站的实时监控和故障诊断能力。同时,该技术对构网型储能变流器(ST系列)的VSG控制策略优化具有启发意义,可用于改进系统暂态响应特性。建议在PowerTitan和SG系列产品的控制器开发中采用类似的降阶建模思路,提升大规模并网系统的仿真效率和控制性能。