← 返回
储能系统技术 储能系统 ★ 4.0

一种用于随机连续扰动下暂态稳定性评估的非采样时域仿真框架

A Non-Sampling Time-Domain Simulation Framework for Transient Stability Assessment Under Stochastic Continuous Disturbances

作者 Yuerong Yang · Shunjiang Lin · Shiyuan Chen · Mingbo Liu · Qifeng Li
期刊 IEEE Transactions on Power Systems
出版日期 2024年6月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 随机连续扰动 电力系统动态性能 非采样时域仿真框架 概率分布 暂态稳定评估
语言:

中文摘要

基于随机微分代数方程(SDAEs)描述电力系统在随机连续扰动下的动态行为。传统数值方法需大量样本计算状态变量的概率分布,计算成本高。本文提出一种非采样时域仿真(NSTDS)框架,可直接求解暂态过程中各时刻状态变量的概率分布,显著提升计算效率。该框架采用具有更高收敛阶的Milstein-Euler预测校正迭代格式,并结合L^p空间对偶定理,提出一种避免维度灾难的随机变量函数概率分布计算方法,适用于大规模系统。在改进的IEEE 39节点和118节点系统上的算例验证了所提方法在暂态稳定性评估中的高精度与高效性。

English Abstract

The power system dynamic performance under stochastic continuous disturbances is described using stochastic differential algebraic equations (SDAEs). A critical issue of using the conventional numerical methods for SDAEs resides in that they require numerous samples to calculate the probability distributions of state variables in transient process. To mitigate this issue, this paper proposes a non-sampling time domain simulation (NSTDS) framework, which can directly obtain the probability distributions of state variables at each moment of transient process, and significantly reduce the computational time. Within the proposed NSTDS framework, a Milstein-Euler prediction correction iteration scheme is used, which has a higher convergence order than the conventional iteration schemes. In addition, leveraging the duality theorem on Lp space, a method for computing the probability distributions of random variable functions at each moment is proposed, preventing the curse of dimensionality and applicable to large-scale power systems. Finally, case studies on modified IEEE 39- and 118-bus systems validate the high computational accuracy and efficiency of the proposed NSTDS framework for power system transient stability assessment under stochastic continuous disturbances.
S

SunView 深度解读

该非采样时域仿真框架对阳光电源储能系统和新能源并网产品具有重要应用价值。在PowerTitan大型储能系统中,可用于评估随机功率波动(风光出力、负荷变化)下的暂态稳定性,优化构网型GFM控制参数设计。相比传统蒙特卡洛方法,该框架通过直接求解概率分布显著提升计算效率,适用于大规模储能电站的实时稳定性评估。对于ST系列储能变流器,可基于随机微分代数方程建模,在iSolarCloud平台实现快速暂态分析与预测性维护。Milstein-Euler高阶收敛算法为虚拟同步机VSG控制策略在随机扰动下的鲁棒性验证提供高效工具,助力阳光电源提升新能源电站并网稳定性与智能运维能力。