← 返回
光伏发电技术 ★ 5.0

用于光伏组件检测的紫外荧光成像:现场组件观测特征的最佳实践与调查

Ultraviolet Fluorescence Imaging for Photovoltaic Module Metrology: Best Practices and Survey of Features Observed in Fielded Modules

作者 Dylan J. Colvin · Andrew M. Gabor · William C. Oltjen · Philip J. Knodle · Ange Dominique Yao · Brent A. Thompson
期刊 IEEE Journal of Photovoltaics
出版日期 2025年3月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏产业 紫外荧光成像 图像获取处理解读 数据库 指南
语言:

中文摘要

随着光伏(PV)产业的日益成熟,对系统进行特性表征的程度也必须相应提高。紫外荧光(UVF)成像技术是一种有价值、易于实施、高通量且非侵入性的技术,可用于在现场和实验室对光伏组件进行特性表征。然而,紫外荧光成像仍是一项相对较新的技术,光伏行业的许多人仍未意识到其潜力。我们提供了获取、处理和解读紫外荧光图像的指南。我们列出了成像硬件和设置的注意事项,提出了图像处理的建议流程,并详细介绍了紫外荧光图像中显示的特征调查情况。一个包含7190个光伏组件紫外荧光图像的新数据库以及由BrightSpot Automation整理的另一个数据库已公开可用。

English Abstract

As the photovoltaics (PV) industry grows in sophistication, so must the extent to which systems are characterized. UV Fluorescence (UVF) imaging is a valuable, easy-to-perform, high-throughput, nonintrusive technique for characterizing modules in the field and in the lab. However, UVF is still a relatively new technique, and many in the PV industry are still unaware of its potential. We provide a guideline for obtaining, processing, and interpreting UVF images. We have provided a list of considerations for imaging hardware and settings, a suggested pipeline for image processing, and details on a survey of features shown in UVF images. A new database with UVF images of 7190 modules and another database curated by BrightSpot Automation are publicly available.
S

SunView 深度解读

该紫外荧光成像技术对阳光电源光伏逆变器产品线及iSolarCloud智能运维平台具有重要应用价值。UVF无损检测可集成至SG系列逆变器的智能诊断系统,通过识别封装脱层、电极断裂等早期缺陷,提升MPPT算法对组件异常的响应精度。标准化的缺陷特征库可嵌入iSolarCloud平台,实现大规模电站的预测性维护,降低因组件隐性故障导致的发电损失。该技术为阳光电源构建从组件级到系统级的全链条质量监控体系提供技术支撑,特别适用于1500V高压系统中组件可靠性的长期追踪,助力提升电站全生命周期收益率。