← 返回
光伏发电技术 ★ 5.0

基于层次时间序列方法的稀疏数据集光伏系统性能预测

Hierarchical Time-Series Approaches for Photovoltaic System Performance Forecasting With Sparse Datasets

作者 Edris Khorani · Sophie L. Pain · Tim Niewelt · Ruy S. Bonilla · Tasmiat Rahman · Nicholas E. Grant
期刊 IEEE Journal of Photovoltaics
出版日期 2024年10月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 太阳能发电 光伏系统性能预测 电网稳定性 分层模型 集成机器学习算法
语言:

中文摘要

由于太阳能发电供电具有间歇性,这给系统和电网运营商带来了挑战。由于数据收集困难以及互联系统存在不一致性,预测光伏(PV)发电厂和屋顶光伏系统的性能往往颇具挑战。基于光伏系统在地理和时间上的相似性所形成的分层聚合结构,我们提出一种简化方法,用于预测单个光伏装置的性能,并评估这些假设装置对整个电网的影响。我们利用发电的分层特性,并确定气象数据集,以预测输入数据未测地区的新系统或现有系统的性能。我们展示了一种方法,即通过对公用事业和屋顶光伏装置的公开可用数据集应用分层模型来提高电网稳定性。使用16周已知的每小时输入训练特征对集成机器学习算法进行训练,为已知地点构建一个基线模型。然后,在细粒度和子区域层面上,直接比较输入特征已知和未知地点的预测准确性。我们发现,使用分层方法会使预测准确率降低6% - 8%。通过在时间上增加训练数据集,以及增加分层结构的嵌套层,分层模型的准确性在我们研究的基础上还可以进一步提高。

English Abstract

Solar-based power generation presents challenges for system and grid operators due to the intermittent nature of power supply. Predicting the performance of photovoltaic (PV) power plants and rooftop systems can often be challenging due to difficulties in data collection and incoherencies in interconnected systems. Following the hierarchical aggregation structure from geographical and temporal similarities between PV systems, we suggest a simplified approach to predicting the performance of individual installations and evaluating the impact of these hypothetical installations on the overall grid. We use the hierarchical nature of power generation and ascertain weather datasets to predict the performance of new or existing systems for locations with unmeasured input data. We demonstrate an approach that could improve grid stability by using a hierarchical model on publicly available datasets on utility and rooftop installations. Ensemble machine learning algorithms are trained with 16 weeks of known hourly input training features to form a baseline model for known locations. The prediction accuracy is then directly compared for locations with known and unknown input features, both on a granular and subregion level. We observe a reduction in prediction accuracy by 6–8% using the hierarchical approach. The accuracy of the hierarchical model can be further enhanced beyond our work by increasing the training dataset temporally, as well as by augmenting nested layers of the hierarchy.
S

SunView 深度解读

该层次时间序列预测技术对阳光电源iSolarCloud智能运维平台和PowerTitan储能系统具有重要应用价值。在光伏电站运维场景中,通信故障或传感器异常常导致数据稀疏,该方法通过多层级数据聚合可显著提升SG系列逆变器功率预测精度,优化MPPT算法的前瞻性控制。对于储能系统,准确的光伏出力预测能改进ST系列变流器的充放电策略制定,提升能量管理效率。该技术可集成至iSolarCloud平台的预测性维护模块,在数据缺失工况下仍保持高可靠性预测,增强电网调度响应能力,特别适用于分布式光伏场站的智能化管理。