← 返回
光伏发电技术 ★ 5.0

光电能量收集硅基LSI中的保护环设计

Guard Ring Designs on Photovoltaic Energy Harvesting Silicon LSIs

作者 Takaya Sugiura · Yuta Watanabe
期刊 IEEE Journal of Photovoltaics
出版日期 2025年4月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 能量收集 CMOS场效应晶体管 PN二极管 保护环结构 光伏电池
语言:

中文摘要

本研究探索了在能量收集应用中保护互补金属氧化物半导体(CMOS)场效应晶体管(FET)和PN二极管免受体载流子污染的策略。能量收集过程会在体区产生过多载流子,这些载流子可能会从p(P型衬底)/n(N阱)结或无三阱结构的NMOSFET进入PMOS区。为解决这一问题,本研究考察了保护环结构通过复合周边载流子来保护CMOSFET和PN二极管的有效性。CMOSFET周围未钝化金属的形成可在载流子进入PMOSFET的N阱区或NMOSFET本身之前促进载流子的消除,从而改善两种场效应晶体管的关态特性。对于PN二极管而言,所获得的较小关态电流和较低阈值电压有利于降低功耗。然而,这种保护环也会通过复合光伏(PV)电池发电所需的载流子而降低其性能。对有背表面场(BSF)和无背表面场的光伏电池进行的实验研究表明,前者会降低电池的开路电压($V_{\text{OC}}$),并且在光伏电池附近形成保护环时需要谨慎操作。

English Abstract

This study explores strategies for safeguarding complementary metal–oxide–semiconductor (CMOS) field-effect-transistors (FETs) and PN-diode against bulk carrier contamination for energy harvesting applications. Energy harvesting processes can generate excessive carriers within the bulk region, which can penetrate the PMOS region from the p(P-Sub)/n(NWell) junction or nmosfet without triple-well. To address this problem, this study investigated the effectiveness of a guard ring structure in protecting cmosfets and PN-diode by recombining carriers in their vicinities. The formation of unpassivated metals around cmosfets serves as a catalyst for carrier elimination before they penetrate the NWell region of a pmosfet or the nmosfet itself, thereby improving the off states of both FETs. For a PN diode, the smaller off-current and lower threshold voltage obtained are advantageous for low-power consumption. However, such guard ring also degrades the performance of a photovoltaic (PV) cell by recombining the carriers needed by the cell to generate power. The experimental study of PV cells w/back-surface-field (BSF) and w/o BSF revealed that the former reduced the V_OC of the cell with and that caution is required when forming a guard ring nearby the PV cell.
S

SunView 深度解读

该保护环设计技术对阳光电源功率器件集成方案具有重要参考价值。在SG系列光伏逆变器和ST储能变流器的ASIC芯片设计中,优化的N/P型保护环结构可有效抑制CMOS器件的寄生闩锁效应,提升功率控制芯片在高压大电流环境下的可靠性。特别是在1500V高压系统中,该技术可降低相邻功率器件间的载流子干扰,减少漏电流损耗,提高MPPT算法执行的精度与稳定性。对于PowerTitan大型储能系统的BMS芯片设计,该防护策略可增强电池管理电路在复杂电磁环境下的抗干扰能力,延长系统使用寿命,为阳光电源下一代高集成度功率半导体平台提供设计优化方向。