← 返回
光伏发电技术
★ 5.0
结合风向与降水效应的光伏组件温度预测模型
Photovoltaic Module Temperature Prediction Model Incorporating Wind Direction and Precipitation Effects
| 作者 | José F. B. de F. Filho · Washington L. A. Neves · Flavio B. Costa |
| 期刊 | IEEE Journal of Photovoltaics |
| 出版日期 | 2025年6月 |
| 技术分类 | 光伏发电技术 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 光伏组件温度 气候因素 预测模型 多元线性回归 分布式光伏系统 |
语言:
中文摘要
本研究提出了一种创新方法,除了对环境温度、风速、太阳辐照度和相对湿度等常用分析变量进行考量外,还纳入了风向和降水等未被充分研究的气候因素,以估算光伏组件的工作温度。该研究填补了文献空白,提高了光伏组件温度估算模型的预测准确性。所开发的方法旨在整合来自任何地点的测量数据,并利用两年多测量收集的数据进行了验证,证明所得预测模型既有效又精确。该方法采用多元线性回归推导预测模型,确保在不同环境背景下具有适应性和准确性。结果表明,与其他模型相比,预测性能有显著提升。这一进展有助于全球分布式光伏系统的更好设计和运行。
English Abstract
This study presents an innovativeapproach to estimate the operating temperature of photovoltaic modules by incorporating underexplored climatic factors, such as wind direction and precipitation, in addition to commonly analyzed variables, such as ambient temperature, wind speed, solar irradiance, and relative humidity. The research addresses a gap in the literature, improving the predictive accuracy of photovoltaic module temperature estimation models. The developed methodology is designed to integrate measurement data from any location and was validated using data collected from over two years of measurements, demonstrating that the resulting prediction model is both valid and precise. The methodology employs multiple linear regression to derive the predictive model, ensuring adaptability and accuracy across different environmental contexts. Results indicate a significant improvement in prediction performance compared to other models. This advancement supports better design and operation of distributed photovoltaic systems globally.
S
SunView 深度解读
该温度预测模型对阳光电源SG系列光伏逆变器和iSolarCloud智能运维平台具有重要应用价值。精准的组件温度预测可优化MPPT算法,通过实时温度修正提升功率追踪精度;风向、降水等环境因子的引入,可增强智能诊断系统对异常发热的识别能力,实现预测性维护。该模型可集成至iSolarCloud平台,结合气象数据实时预测组件温度,为发电量预测、系统降额控制提供更可靠依据,特别适用于复杂气候环境下的大型光伏电站性能评估,有效提升系统能效和运维智能化水平。