← 返回
电动汽车驱动
★ 5.0
退役电动汽车电池与并网混合能源系统的经济技术分析
Techno-economic analysis of Retired Electric Vehicle Batteries with Grid-Connected Hybrid Energy System
| 作者 | Pankaj Sharm · Saravanakumar Raju |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 339 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | An enhanced MH algorithm EnSFOA is proposed for grid-connected HRES with REVB. |
语言:
中文摘要
摘要 本研究旨在对用于电动汽车(EV)充电的退役电动汽车电池(REVB)与并网混合能源系统(HES)进行经济技术分析。该工作整合了多种参数,以实现REVB与并网HES系统的优化设计。技术参数包括可再生能源因子(RF)、光伏发电占比(PVF)以及风能发电占比(WF);经济因素考虑了平准化度电成本(LCOE)、净现值成本(NPC)和年化系统成本(ASC);环境因素则涵盖避免的温室气体减排量(RGGE)。此外,所提出的方案还纳入了人类发展指数(HDI)和社会因素中的就业创造因子(JCF)。为有效应对这一多目标优化问题,本文提出了一种改进的优化算法——增强型海星优化算法(Enhanced Star Fish Optimization Algorithm, EnSFOA)。同时,通过CEC 2019和CEC 2022测试函数集以及REVB与并网HES系统设计问题,评估了EnSFOA算法的有效性。分析结果表明,EnSFOA算法为选定场址确定了最具成本效益的ASC、LCOE和NPC值,分别为1.815253×10⁵美元、0.2295美元/千瓦时和2.5799×10⁶美元/年,且这些数值被评估为具备经济可行性。EnSFOA算法在实现最优经济性的同时,有效降低了环境影响,并保持了优良的JCF和HDI水平。上述结果验证了EnSFOA算法作为一种有潜力的工具,能够在应对REVB与并网HES系统复杂性的同时,推动可持续能源解决方案的发展。
English Abstract
Abstract The present study aims to conduct a techno-economic analysis of Retired Electric Vehicle Batteries (REVB) with Grid-Connected Hybrid Energy Systems (HES) for Electric Vehicle (EV) charging. This work integrates various parameters for the optimal design of a REVB with a grid-connected HES system. Technical parameters include Renewable factor (RF), Photovoltaic fraction (PVF), as well as Wind fraction (WF); Economic factors considered are Levelized Cost of Energy (LCOE), Net Present Cost (NPC), and Annualized system cost (ASC); and Environmental factors such as Avoided Reduced greenhouse gas emissions (RGGE). Additionally, the social factor of the Human Development Index (HDI), and the Job Creation Factor (JCF) are included in the proposed design. An enhanced optimization algorithm known as the Enhanced Star Fish Optimization Algorithm (EnSFOA) is proposed to address this challenge effectively. Additionally, the effectiveness of the EnSFOA algorithm is assessed through the CEC 2019 and CEC 2022 test suites along with the REVB with Grid-Connected HES design problem. The analysis demonstrates that the EnSFOA algorithm has determined the most cost-effective ASC, LCOE, and NPC for the chosen site, with values of 1.815253E+05 $, 0.2295 $/kWh, and 2.5799E+06 $/year, respectively and these values are assessed to be economically feasible. The EnSFOA algorithm achieves optimum economic effectiveness while concurrently reducing environmental impact while maintaining an excellent JCF and HDI. These results confirm the EnSFOA algorithm as a potential tool for encouraging sustainable energy solutions while addressing the complex nature of REVB with a grid-connected HES system.
S
SunView 深度解读
该研究对阳光电源退役电池梯次利用具有重要参考价值。可结合ST系列储能变流器与PowerTitan系统,构建光储充一体化解决方案。文中多目标优化算法(EnSFOA)可启发iSolarCloud平台的智能调度策略优化,在LCOE与NPC经济性指标上实现精准控制。建议将该技术经济分析框架应用于SG系列光伏逆变器与充电桩的协同配置,通过GFM控制技术提升电网友好性,同时探索退役电池在分布式储能场景的商业化路径,强化全生命周期能源管理能力。