← 返回
储能系统技术 储能系统 ★ 5.0

基于解析目标级联的含储能系统的输配电网协同优化

Analytical Target Cascading Based Co-Optimization of Transmission and Distribution Systems With Energy Storage System

作者 Sophia Owais · Md Jamal Ahmed Shohan · Md Omar Faruque
期刊 IEEE Transactions on Power Systems
出版日期 2025年2月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 可再生能源 储能系统 双级协同优化框架 交直流最优潮流 运行成本
语言:

中文摘要

在输配电网络中集成可再生能源和储能系统(ESS),在优化潮流和高效调度储能系统方面带来了重大挑战,这需要解决复杂的时域耦合约束问题。为解决这一问题,我们提出了一种名为基于Q学习的解析目标级联(ATC - Q)优化的新型双层协同优化框架,用于解决输配联合网络中的交流最优潮流(ACOPF)问题。该算法在24小时滚动时域内同时考虑输电网和配电网的储能系统,同时考虑实时电价、储能系统当前荷电状态、预测的光伏发电量(PV)和负荷需求。所提出的解决方案旨在通过解耦时域约束并根据储能系统当前和未来状态构建队列来改进储能系统的调度。该解决方案无缝集成到解析目标级联的迭代过程中,将两阶段随机输配电交流最优潮流(T&D ACOPF)问题分解为上层和下层问题。通过在各层之间共享相关信息来保持计算效率。为验证所提出的方法,该算法在一个修改后的IEEE 39节点输电网与34节点配电网相连的网络上实现,该网络包含光伏发电、储能系统和动态负荷。通过全面的案例研究,所提出的算法显示出降低了运行成本并改善了联合网络的运行。所提出的算法通过使用数字实时模拟器(DRTS)和作为主控制器的外部计算机实现的控制器硬件在环设置进行了验证,展示了其成本效益和适用于实时应用的特性。

English Abstract

The integration of renewable energy sources and energy storage systems (ESS) in transmission and distribution networks poses significant challenges in optimizing the power flow and scheduling the ESS efficiently which requires addressing intricate time-domain coupling constraints. To address this issue, we propose a novel Bi-level co-optimization framework called the Q-learning based Analytical Target Cascading (ATC-Q) optimization for solving alternating current optimal power flow (ACOPF) in transmission and distribution combined networks. The algorithm considers ESS at both T&D systems over a 24-hour receding horizon, taking into account real-time energy prices, current ESS state of charge, forecasted photovoltaics (PV), and load demand. The proposed solution aims to improve the scheduling of ESS by decoupling time-domain constraints and formulating a queue based on current and future ESS states. The solution is seamlessly integrated into the iterative process of ATC, which considers two-stage stochastic Transmission and Distribution AC Optimal Power Flow (T&D ACOPF) into a upper level and sub level problem. The computational efficiency is maintained by sharing relevant information between each level. To validate the proposed approach, the algorithm is implemented on a modified IEEE 39 Bus transmission grid network connected to a 34 Bus distribution network, incorporating photovoltaics, ESS, and dynamic load. Through comprehensive case studies, the proposed algorithm showcased a reduction in operational cost and enhanced combined network operation. The proposed algorithm is validated using a Controller Hardware-in-the-Loop setup implemented using a digital real-time simulator (DRTS) and an external computer serving as the main controller, showcasing its cost-effectiveness and suitability for real-time applications.
S

SunView 深度解读

该输配电网协同优化技术对阳光电源PowerTitan大型储能系统和ST系列储能变流器具有重要应用价值。ATC分层优化框架可直接应用于iSolarCloud云平台的多站点协调调度,实现输电侧集中式储能电站与配电侧分布式ESS的协同运行。多时间尺度调度策略可优化储能变流器的充放电曲线,提升可再生能源消纳率和系统经济性。该方法的分解协调思想为阳光电源开发虚拟电厂VPP聚合控制算法提供理论支撑,可集成到ESS能量管理系统EMS中,实现源网荷储多层级优化调度,增强电网友好性和储能资产收益能力。