← 返回
电动汽车驱动 ★ 4.0

一种提升智能电网变电站性能的能量管理策略:数据驱动方法

Energy Management Strategy to Enhance a Smart Grid Station Performance: A Data Driven Approach

作者 Kannan Thirugnanam · Vinod Khadkikar · Tareg Ghaoud · Qais Qawaqneh · Hassan Al Hammadi · Jassim Abdullah
期刊 IEEE Transactions on Power Systems
出版日期 2025年1月
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 能源管理策略 电能质量 智能电网站 分布式发电 能量共享策略
语言:

中文摘要

本文提出一种能量管理策略(EMS),以改善智能电网变电站(SGS)的电能质量(PQ)参数,即电压不平衡、功率因数和频率偏差。在此,SGS 以并网多微电网(MMGs)形式呈现,这些微电网配备了分布式发电机(DG),如太阳能光伏(PV)和风力发电机(WT)、电池储能系统(BES)、电动汽车充电站、电容器组、制冷机以及建筑负载电力需求(LPD)。由于建筑 LPD 的随机性和制冷机运行的动态特性,将 SGS 的 PQ 参数维持在阈值范围内颇具挑战。此外,由于建筑 LPD 的非线性、DG 功率的间歇性以及 BES 容量有限,利用电容器组进行无功功率补偿和借助 BES 对 DG 进行鲁棒控制或许并非改善 PQ 参数的直接有效解决方案。在此背景下,采用人工神经网络方法来预测建筑 LPD、DG 功率和制冷电力需求的未来值。在系统层面上对 SGS 能源、变流器和电网连接进行建模。基于 PQ 参数阈值限制开发 PQ 指标模型。基于唯一识别指标、能量共享指标以及 DG 向相邻建筑供应、共享或从相邻建筑购买能量的情况,制定基于模糊理论的对等(P2P)能量共享策略。根据 BES 中的可用能量实施 BES 的充放电控制策略。此外,基于预测平均电压和建筑制冷能量需求(CED)指标实施 CED 降低策略。最后,为 SGS 实施一种 EMS,该策略由现有 EMS 和所提出的 EMS 构成。现有 EMS 为基准策略,它将可用的 DG 能量提供给建筑,不足的能量则从电网获取。所提出的 EMS 是 PQ 参数缓解策略,它通过基于模糊理论的 P2P 能量共享策略将 PQ 参数维持在阈值范围内。利用 SGS 的实测数据验证所提出的 EMS 的有效性。通过仿真研究表明,所提出的 EMS 能够将 PQ 参数维持在阈值范围内,并在同时启用 SGS 能量的情况下降低 CED。

English Abstract

This paper proposes an energy management strategy (EMS) to enhance the power quality (PQ) parameters, i.e., voltage unbalance, power factor, and frequency deviation, of a smart grid station (SGS). Here, the SGS is represented as grid-connected multi-microgrids (MMGs), which are equipped with distributed generators (DGs), i.e., solar photovoltaic (PV) and wind turbines (WTs), battery energy storage systems (BESs), electric vehicle charging stations, capacitor banks, chillers, and building load power demand (LPD). Maintaining the PQ parameters of the SGS within the threshold limits is challenging due to the stochastic nature of building LPD and the dynamic behaviors of chiller operations. Furthermore, reactive power compensation with capacitor banks and robust control of DGs with BESs might not be a straightforward solution to improve the PQ parameters due to the nonlinearity of building LPD, the intermittent nature of DG power, and the limited capacity of BESs. In this context, an artificial neural network approach is used to predict the future values of building LPD, DG power, and cooling power demand. The SGS energy sources, converters, and grid connections are modeled at the system level. PQ index models are developed based on PQ parameter threshold limits. A fuzzy-based peer-to-peer (P2P) energy-sharing strategy is developed based on a unique identification index, an energy-sharing index, and DGs' energy supplying, sharing, or buying to and/or from the neighborhood building. The BESs' charging and discharging control strategy is implemented based on the available energy in BESs. Furthermore, a cooling energy demand (CED) reduction strategy is implemented based on the predicted mean voltage and building CED index. Finally, an EMS is implemented for the SGS, which consists of existing and proposed EMS. The existing EMS is the baseline strategy, which provides available DG energy to the building, and deficit energy is supplied from the grid. The proposed EMS is the PQ parameter mitigation strategy, which maintains the PQ parameters within the threshold limits through the fuzzy-based P2P energy-sharing strategy. Measured data from the SGS are used to demonstrate the effectiveness of the proposed EMS. Through simulation studies, it is shown that the proposed EMS is capable of maintaining the PQ parameters within the threshold limits and reducing CED by concurrently enabling SGS energy.
S

SunView 深度解读

该数据驱动的能量管理策略对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。文章提出的电压不平衡抑制、功率因数校正和频率偏差控制技术,可直接应用于储能变流器的构网型GFM控制算法优化,提升电网支撑能力。实时监测与历史数据融合的动态调度方法,可集成到iSolarCloud云平台的智能诊断模块,实现储能系统预测性维护。该策略对提升光储一体化电站的电能质量管理水平、增强多场景适应性具有借鉴意义,特别适用于弱电网环境下的ESS集成方案优化,可有效改善系统稳定性与供电可靠性。