← 返回
拓扑与电路 ★ 5.0

参数误差识别用于逆变器型资源动态模型的验证与校准

Parameter Error Identification for Validation and Calibration of Dynamic Models of Inverter-Based Resources

作者 Nitish Sharma · Yuzhang Lin
期刊 IEEE Transactions on Power Systems
出版日期 2025年8月
技术分类 拓扑与电路
相关度评分 ★★★★★ 5.0 / 5.0
关键词 逆变器资源 模型参数误差 检测识别估计 拉格朗日乘数法 卡尔曼滤波框架
语言:

中文摘要

摘要:随着可再生能源的发展,基于逆变器的电源(IBR)的精确动态模型对于电力系统的运行和规划至关重要。在实际应用中,由于 IBR 模型参数众多,各种情况都可能导致模型参数出现误差,且难以准确定位。本文提出了一个利用终端测量数据检测、识别和估计 IBR 模型参数误差的框架。此前用于稳态模型(代数方程)校准的最大归一化拉格朗日乘数法,通过将其集成到卡尔曼滤波框架中,被扩展应用于 IBR 动态模型。该方法无需同时估计所有参数,就能准确找出需要校准的错误参数,还能区分模型参数误差和传感器测量误差。本文给出了 IEEE 39 节点测试系统的仿真结果,以验证该方法在物理 IBR 系统参数及其数字控制器参数方面的有效性。

English Abstract

Accurate dynamic models of Inverter-Based Resources (IBRs) are crucial for power system operation and planning as renewable energy grows. In practice, model parameter errors may arise from a variety of conditions and are difficult to pinpoint due to the large number of parameters in IBR models. This paper proposes a framework for detecting, identifying, and estimating parameter errors within IBR models using terminal measurements. The largest normalized Lagrange multiplier method, which was previously designed for the calibration of steady-state models (algebraic equations), is extended to dynamic models for IBRs by its integration into the Kalman filtering framework. It can accurately pinpoint the erroneous parameter that requires calibration without the need of estimating all parameters simultaneously, and also differentiate between model parameter errors and sensor measurement errors. Simulation results from the IEEE 39-bus test system are presented to validate the methodology for both the parameters of physical IBR systems and those of their digital controllers.
S

SunView 深度解读

该参数误差辨识技术对阳光电源IBR产品的电网适应性提升具有重要价值。在ST储能变流器和SG光伏逆变器的GFM/GFL控制策略开发中,可通过实测数据快速校准电流环、电压环及功率控制参数,确保并网动态响应符合电网规范要求。对PowerTitan大型储能系统,该方法能验证多机并联场景下的控制参数一致性,减少调试周期。结合iSolarCloud平台的运行数据,可实现参数在线辨识与自适应校准,提升虚拟同步机VSG等先进控制算法的现场适配能力,增强产品在弱电网及高比例新能源场景下的稳定运行能力,为电网侧稳定性分析提供高精度仿真模型支撑。