← 返回
储能系统技术 储能系统 ★ 5.0

通过将铁-空气氧化还原电池集成到CSP-CaL系统中实现电能与热能混合存储

Realizing hybrid electrical and thermal energy storage by integrating an iron-air redox battery into the CSP-CaL system

语言:

中文摘要

摘要 能源存储技术的发展推动了可再生能源的应用,解决了能源波动性问题。然而,电网吸纳能力不足导致大量弃电现象。本研究提出将固体氧化物铁-空气氧化还原电池(SOIARB)集成至太阳能光热发电(CSP)与钙循环(CaL)系统中,以实现电能与热能的混合存储。在三种集成方案中,方案一(CaCO₃气流加热Fe气流)表现出最高的往返效率(RTE)。当电流密度从100 A/m²升高至2000 A/m²时,电池的能量效率从91.99%下降至53.60%。能量分析表明,当铁的质量流量为15.01 kg/s、横截面积为74554.44 m²时,CSP-CaL-SOIARB系统的性能最优。整个系统的往返效率和SOIARB子系统的往返效率分别达到48.77%和61.01%。铁-空气电池的集成使系统整体供电能力提高了31.37 MW,增幅达72.55%。㶲分析结果显示,整个系统的㶲效率达到50.04%,表明该系统在电能与热能混合存储方面具有显著潜力。

English Abstract

Abstract The development of renewable energy through energy storage technologies has addressed the issue of energy fluctuations. However, the insufficient absorption capacity of the grid leads to significant power curtailment. In this work, a solid oxide iron-air redox battery (SOIARB) is integrated into the concentrated solar power (CSP) with calcium looping (CaL) system to achieve hybrid electrical and thermal energy storage. Among three integration scenarios, scenario-1 (CaCO 3 stream heats Fe stream) exhibits the highest round-trip efficiency (RTE). As the current density escalates from 100 A/m 2 to 2000 A/m 2 , the energy efficiency of the battery decreases from 91.99 % to 53.60 %. Energy analysis shows that the CSP-CaL-SOIARB system performs best when the iron flow is 15.01 kg/s and the cross-sectional area is 74554.44 m 2 . RTE of the overall system and SOIARB subsystem reach 48.77 % and 61.01 %, respectively. The integration of iron-air batteries has improved the power supply capacity of the overall system by 31.37 MW, an increase of 72.55 %. Exergy analysis shows that the exergy efficiency of the overall system reaches 50.04 %, which exhibits considerable potential in hybrid electrical and thermal energy storage.
S

SunView 深度解读

该混合电-热储能技术对阳光电源ST系列储能变流器和PowerTitan系统具有重要启示。铁-空气电池与光热发电耦合实现72.55%功率提升,验证了多元储能协同价值。建议在ST系列PCS中集成热电联储控制算法,优化充放电策略以提升往返效率。该技术可应用于大型光伏电站配储场景,通过iSolarCloud平台实现电热协同调度,解决弃电问题。固态氧化物电池的高温特性与阳光电源功率器件热管理技术形成协同,可探索SiC器件在极端工况下的应用潜力,为下一代储能系统提供技术储备。