← 返回
用于高温混合热能储存应用的潜热储存单元中的中空和穿孔翅片
Hollowed and perforated fins in latent heat storage units for High-Temperature hybrid thermal energy storage applications
| 作者 | İsmail Gürkan Demirkıran · Klarissa Niedermeier · ErdalÇetkin |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 340 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Perforated fins balance conduction and convection for enhanced heat transfer. |
语言:
中文摘要
摘要 高温热能储存(TES)对于下一代聚光太阳能发电(CSP)电站实现持续能源供应至关重要。将潜热储存(LHS)与显热储存(SHS)相结合,可利用相变材料(PCMs)的高储热能力,同时降低显热储存的热棘轮效应,从而提高能量密度、热稳定性和效率。本研究聚焦于采用钠作为传热流体(HTF)的壳管式潜热储存系统的数值分析,探讨中空和穿孔翅片对增强有效换热性能的影响。仿真在三维求解域内使用ANSYS Fluent软件完成。结果表明,翅片去除率和孔洞布置位置是关键的设计因素。在穿孔翅片-中间(全高)结构中,20%的穿孔率能够在保持较高传热效率的同时,降低材料成本并增加PCM的储存量。与熔融盐作为传热流体相比,液态金属表现出更有效的较低HTF出口温度,这对于LHS-SHS系统的集成尤为关键。这些发现为大规模CSP应用中高温TES装置的优化提供了有价值的理论依据。
English Abstract
Abstract High-temperature thermal energy storage (TES) is essential for next-generation concentrated solar power (CSP) plants in order to ensure continuous energy supply. Hybridization of latent heat storage (LHS) and sensible heat storage (SHS) enhances energy density, thermal stability, and efficiency by leveraging the high storage capacity of phase change materials (PCMs) while reducing thermal ratcheting for sensible storage. This study focuses on a numerical analysis of a shell-and-tube LHS using sodium as heat transfer fluid (HTF). It examines the impact of hollowed and perforated fins to enhance effective heat exchange. Simulations were conducted in a 3D solution domain using ANSYS Fluent. The results show that fin removal rate and hole placement are crucial design factors. A 20% perforation rate in the Perforated fin-Middle(full) configuration maintains high heat transfer efficiency, reduces material costs, and increases PCM storage. In comparison to molten salts as HTFs, liquid metals exhibit effectively lower HTF outlet temperatures, which is vital for LHS-SHS integration. These findings provide valuable insights for optimizing high-temperature TES units in large-scale CSP applications.
S
SunView 深度解读
该高温相变储热技术对阳光电源PowerTitan液冷储能系统具有重要借鉴价值。研究中的穿孔翅片优化设计(20%开孔率)可应用于ST系列PCS热管理系统,通过减少材料用量同时保持换热效率,降低成本并提升能量密度。液态金属HTF的低出口温度特性为光储一体化方案提供新思路,可优化CSP电站配套储能系统的热电耦合控制策略。该技术与iSolarCloud平台结合,可实现储能单元热管理的预测性维护,提升大规模储能电站的长期运行稳定性和经济性。