← 返回
电动汽车驱动 充电桩 ★ 4.0

揭示针对$N-1$安全电力系统的负载篡改攻击:一种稀有事件采样方法

Uncovering Load-Altering Attacks Against $N-1$ Secure Power Grids: A Rare-Event Sampling Approach

作者 Maldon Patrice Goodridge · Subhash Lakshminarayana · Alessandro Zocca
期刊 IEEE Transactions on Power Systems
出版日期 2024年7月
技术分类 电动汽车驱动
技术标签 充电桩
相关度评分 ★★★★ 4.0 / 5.0
关键词 负荷变更攻击 时空特征 稀有事件采样 静态攻击 动态攻击
语言:

中文摘要

针对大量基于物联网的高功率设备(如智能电动汽车充电站)的变载攻击(LAA)可能会严重扰乱电网运行。在本研究中,我们旨在揭示可能造成严重影响的变载攻击的时空特征。这一问题颇具挑战性,因为现有的保护措施,如旨在使电力系统能够抵御单个组件故障的 $N - 1$ 安全性,在很大程度上也能使系统对负载变化具有恢复能力。因此,那些能导致网络故障的、经过精心策划注入的负载扰动可被视为“罕见事件”。为此,我们采用一种罕见事件采样方法来揭示在电力网络中时空分布的变载攻击。这种采样方法的关键优势在于能够从具有不连续支撑集的多模态条件分布中进行高效采样。此外,我们系统地比较了静态(一次性操纵需求)和动态(跨多个时间段的攻击)变载攻击的影响。我们使用基准 IEEE 测试母线系统进行了广泛的仿真。结果表明:(i)与其他采样方法相比,在揭示变载攻击方面,罕见事件采样具有优越性且有其必要性;(ii)对静态和动态变载攻击的特征和影响进行了统计分析;(iii)不同网络规模和负载条件下(由变载攻击导致的)级联故障规模。

English Abstract

Load-alteringattacks (LAAs) targeting a large number of IoT-based high-wattage devices (e.g., smart electric vehicle charging stations) can lead to serious disruptions of power grid operations. In this work, we aim to uncover spatiotemporal characteristics of LAAs that can lead to serious impact. The problem is challenging since existing protection measures, such as N-1 security designed to make the power system resilient to single component failures, also provide resilience to load changes to a large extent. Thus, strategically injected load perturbations that lead to network failure can be regarded as rare events. To this end, we adopt a rare-event sampling approach to uncover LAAs distributed temporally and spatially across the power network. The key advantage of this sampling method is the ability to sample efficiently from multi-modal conditional distributions with disconnected support. Furthermore, we systematically compare the impacts of static (one-time manipulation of demand) and dynamic (attack over multiple time periods) LAAs. We perform extensive simulations using benchmark IEEE test bus systems. The results show (i) the superiority and the need for rare-event sampling in the context of uncovering LAAs as compared to other sampling methodologies, (ii) statistical analysis of attack characteristics and impacts of static and dynamic LAAs, and (iii) cascade sizes (due to LAA) for different network sizes and load conditions.
S

SunView 深度解读

该负载篡改攻击防护研究对阳光电源充电桩产品线具有重要安全价值。研究揭示的协调性负载攻击风险直接关联智能充电桩的并网安全性。建议在充电桩控制系统中集成异常负载检测算法,通过监测充电功率突变模式识别潜在攻击行为。可将稀有事件采样方法应用于iSolarCloud云平台,建立充电站集群的安全态势感知系统,实时评估大规模充电负载对配电网N-1安全准则的影响概率。针对PowerTitan储能系统,该研究启发开发主动防御策略:当检测到异常负载波动时,储能系统可快速响应提供功率缓冲,避免线路过载引发级联故障,提升电网韧性与阳光产品的差异化竞争力。