← 返回
储能系统技术 储能系统 ★ 5.0

含不确定风电与负荷的电力系统稀有事件可扩展风险评估

Scalable Risk Assessment of Rare Events in Power Systems With Uncertain Wind Generation and Loads

作者 Bendong Tan · Junbo Zhao · Yousu Chen
期刊 IEEE Transactions on Power Systems
出版日期 2024年7月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 罕见事件风险评估 深度神经网络 向量值高斯过程 计算效率 电力系统
语言:

中文摘要

随着可再生能源的不断接入以及系统不确定性的存在,罕见事件的风险评估在电力系统规划和运行中变得愈发重要。然而,通过传统方法,即蒙特卡罗抽样(MCS)来量化罕见事件带来的风险,会因大量的潮流模拟而产生巨大的计算成本。为了加快评估速度,本文提出了一种深度神经网络(DNN)核化的向量值高斯过程(VVGP)方法,该方法在保持高精度的同时具有出色的计算效率。因此,作为潮流求解器的替代模型,与潮流求解器相比,DNN 核化的 VVGP 能够显著加快风险评估速度且保证评估的准确性。所开发的替代模型能够评估包含超过 90% 实例的低阶 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N - k$</tex-math></inline-formula> 事件,它能巧妙地捕捉拓扑特征,而高阶 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$N - k$</tex-math></inline-formula> 事件则通过潮流求解器进行评估,从而在计算效率和不确定性量化精度之间取得平衡。此外,该模型引入了支持向量机(SVM)分类器,对低概率尾部事件进行重采样,以抵消 DNN 核化的 VVGP 评估过程中可能引入的偏差。在修改后的 IEEE 24 节点、118 节点和欧洲 1354 节点系统上进行的仿真表明,与其他先进方法相比,所提出的方法在大规模电力系统中能够在保持蒙特卡罗抽样设定的精度基准的同时,显著降低计算需求。

English Abstract

Risk assessment of rare events has become increasingly important in power system planning and operation with the increasing integration of renewable energy and the presence of system uncertainties. However, quantifying the risk posed by rare events via the traditional method, i.e., Monte Carlo sampling (MCS), incurs substantial computational expense stemming from the vast ensemble of power flow simulations. To accelerate the assessment, this paper proposes a Deep Neural Network (DNN)-kernelized vector-valued Gaussian Process (VVGP) approach with excellent computational efficiency while maintaining high accuracy. Consequently, serving as a surrogate model for the power flow solver, the DNN-kernelized VVGP enables significantly faster but accurate risk assessment compared to the power flow solver. The developed surrogate model evaluates low-order N-k events that contain more than 90% instances by adeptly capturing the topological features while the high-order N-k events are assessed via a power flow solver, thereby striking a balance between computational efficiency and uncertainty quantification accuracy. Moreover, the model incorporates a Support Vector Machine (SVM) classifier to resample concerning low-probability tail events to counteract the biases potentially introduced during the DNN-kernelized VVGP evaluations. Simulations conducted on the modified IEEE 24-bus, 118-bus, and European 1354-bus systems demonstrate that the proposed method maintains the accuracy benchmark set by MCS while significantly reducing computational demands in large-scale power systems as compared to other state-of-the-art methods.
S

SunView 深度解读

该稀有事件风险评估方法对阳光电源PowerTitan储能系统和iSolarCloud平台具有重要应用价值。在源网荷储一体化场景中,可用于优化ST系列储能变流器的容量配置与调度策略,通过量化极端工况下的风险概率(如风电骤降叠加负荷尖峰),提升储能系统应对黑启动、孤岛运行等稀有事件的能力。重要性采样技术可集成至iSolarCloud智能运维平台,实现高维不确定性下的快速风险预测,指导构网型GFM控制参数优化。该方法的可扩展性适配阳光电源大规模新能源电站的实时决策需求,为储能系统参与电网辅助服务提供量化风险依据,增强系统韧性与经济性。