← 返回
储能系统技术 储能系统 ★ 5.0

液态金属电池中外短路诱发内短路的机理

Mechanism of the External Short Circuit Induced Internal Short Cell in Liquid Metal Batteries

作者 Yi Zhang · E. Zhang · Haomiao Li · Min Zhou · Kai Jiang
期刊 IEEE Transactions on Industry Applications
出版日期 2025年2月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 液态金属电池 外部短路 内部短路 触发机制 锂沉积
语言:

中文摘要

电池技术在大规模储能系统中至关重要,因其灵活性和高效率而备受重视。在众多电池选项中,液态金属电池(LMBs)凭借低成本、长寿命、高安全性和大容量等优势,在储能领域展现出了极具前景的应用潜力。外部短路(ESC)作为一种常见的滥用形式,有可能引发更为严重的内部短路(ISC)。然而,目前大多数关于液态金属电池的研究尚未深入探讨其潜在的触发机制。本文通过电极形态分析揭示了该触发机制,并通过多物理场模型模拟进行了验证。在外部短路过程中,不均匀的电流密度会导致锂的不规则沉积,最终会导致阳极和阴极接触,即发生内部短路。内部短路最有可能发生在阴极的中心位置或阴极与阴极外壳的连接处附近。本研究获得的见解可能有助于改进液态金属电池的结构设计,并降低其在应用中发生短路的风险。

English Abstract

Battery technology is pivotal in large-scale energy storage systems, valued for its flexibility and high efficiency. Among various options, liquid metal batteries (LMBs) stand out with promising applications in the energy storage field, thanks to their low cost, long lifespan, high safety, and large capacity. External short circuits (ESC), as a common form of abuse, can potentially lead to more severe internal short circuits (ISC). However, most existing research on LMB has not thoroughly addressed the underlying trigger mechanism. In this paper, the trigger mechanism is revealed through the electrode morphology analysis and proved by the multiphysics model simulation. In the ESC process, the irregular lithium deposition is induced by the uneven current density, which finally leads to the contact between the anode and cathode, that is, ISC. The ISC is most likely to occur at the center of the cathode or near its junction with the cathode shell. The insights gained from this study may be of assistance to improve the configuration design of LMB and reduce the risk of short circuits occurring in the application.
S

SunView 深度解读

该液态金属电池短路机理研究对阳光电源PowerTitan大型储能系统的安全设计具有重要参考价值。虽然阳光电源主流储能系统采用锂电池技术,但研究揭示的外短路诱发内短路的动态演化机制——局部过热导致电流分布失衡、界面扰动增长形成短路通道——对ST系列储能变流器的多层次保护策略设计具有启发意义。可应用于优化BMS电池管理系统的短路预警算法,通过监测电流分布不均匀性和局部温升特征,在外短路初期实现快速隔离,防止故障升级。该机理研究还可指导ESS集成方案中的热管理系统设计,通过改善散热均匀性抑制局部过热,提升储能系统整体安全性和可靠性。