← 返回
拓扑与电路
★ 4.0
一种考虑天气条件的分布式电源选址定容与配电网开关协调的概率型温变模型
A Probabilistic Temperature-Reliant Model for Optimally Sizing and Siting of Distributed Generators Coordinated with Distribution Network Switching Considering Weather Conditions
| 作者 | Meisam Mahdavi · Amir Bagheri · Francisco Jurado · Augustine Awaafo · Pasala Gopi |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年8月 |
| 技术分类 | 拓扑与电路 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 分布式发电选址 配电网重构 功率损耗 环境因素 负荷变化 |
语言:
中文摘要
摘要:分布式电源(DG)的最优选址和配电线路的合理开关操作被认为是降低配电网损耗最有效的手段。配电网的功率损耗削减在电力系统运行和管理中至关重要,因为它在电力系统总功率损耗中占比最大。电力系统中的损耗会导致高昂的网络运行成本,还会使系统电压分布发生畸变。在传统的分布式电源选址和网络开关操作(重构)机制中,会对分布式电源的最优位置、数量以及开关状态进行优化确定,以确保将损耗降至最低,从而满足用户的电力需求。与恒定负荷相比,配电母线处的负荷变化会导致不同的损耗结果。然而,大多数针对分布式电源配置和网络开关操作问题提出的模型都忽略了用户负荷的可变性。而少数在其提出的模型中考虑了负荷变化的研究,却忽视了环境温度变化和天气条件对电能需求以及线路热额定值的影响,这些因素会影响分布式电源的合适位置、数量以及最优开关方案。因此,本研究评估了环境温度和天气条件变化对分布式电源配置和开关操作解决方案的影响,以评估通过分布式电源选址和网络重构进行损耗优化时,环境温度和条件变化的重要性。在16节点系统中,环境温度仅升高10%,网络拓扑结构和分布式电源布局就会发生变化。科皮夫尼察的实际电网对温度升高表现出更强的适应性,在不同的温度变化下能保持稳定的网络配置。在84节点网络中,最大CPU时间小于27秒,这表明所提出的方法适用于大规模的实际网络。从仿真结果来看,所有测试系统的功率损耗都会受到温度升高的影响。总体而言,可以观察到环境温度、太阳辐射和风速的变化会显著改变分布式电源的合适位置、数量以及开关组合。
English Abstract
Optimally siting distributed generations (DGs) and appropriately switching of distribution lines are regarded as the most effective mechanisms for loss mitigation in a distribution network. Power loss curtailment in distribution networks is very essential in power system operation and management since it constitutes the major share of the overall power loss in power systems. Losses in power systems lead to exorbitant network operation costs as well as the distortion of the system's voltage profile. In traditional DG placement and network switching (reconfiguration) mechanisms, the optimal locations and the number of distributed generators and state of switches are optimally determined for ensuring that losses are reduced to the barest minimum in order to meet the power demand of consumers. Load variation in distribution buses leads to different resultant losses in comparison with constant loads. Nevertheless, most of the proposed models for DG allocation and network switching problem have ignored consumers' load variability. While the selected few that considered load variation in their proposed models neglected the impact of ambient temperature change and weather conditions on electrical energy demand and thermal rating of lines which influence appropriate places and DG number, as well as optimal switching plans. Accordingly, the current study evaluates environment's temperature and weather conditions changes impacts on DG allocation and switching solutions to assess environmental temperature and conditions change importance in loss optimization via DG placement and network reconfiguration. In the 16-bus system, the network topology and DG arrangement change with just a 10% rise in environmental temperature. The actual grid of Koprivnica demonstrates greater resilience to temperature increases, maintaining a stable network configuration under various temperature variations. In the 84-bus network, the maximum CPU time is less than 27 seconds, indicating the applicability of the proposed approach to large-scale and real-world networks. From the simulation results, the lost power is influenced by heat degree increment for all test systems. In total, it is observed that ambient temperature, solar irradiation, and wind speed variations significantly change the appropriate places and DG sources number and switching combination.
S
SunView 深度解读
该温变模型对阳光电源分布式能源系统规划具有重要价值。在ST储能系统部署中,可结合环境温度对变流器效率和电池性能的影响,优化储能容量配置与选址策略;在SG光伏逆变器并网规划中,通过考虑温度对线路阻抗和负荷特性的动态影响,提升MPPT算法在不同气候条件下的适应性。该概率模型与网络拓扑协同优化的思路,可应用于iSolarCloud平台的智能调度算法,实现多场景下的网损最小化与电压稳定性提升,增强阳光电源分布式能源解决方案在极端气候下的鲁棒性与经济性。