← 返回
将季节性钻孔热能储存集成到深层钻孔地源热泵系统中:不确定性条件下的动态性能分析
Integrating seasonal borehole thermal energy storage into deep borehole ground source heat pump systems: Dynamic performance analysis under uncertainties
语言:
中文摘要
摘要 将钻孔热能储存(BTES)集成到闭式中深层地热供热系统中,有助于缓解地下温度下降并支持系统的可持续运行。现有研究主要集中在确定性条件下深层钻孔换热器(DBHE)的储热性能,忽略了集成系统的动态特性以及多种不确定性因素的影响。为弥补这一研究空白,本研究构建了一种太阳能辅助的深层钻孔地源热泵系统,该系统集成了主动加热、被动加热和BTES,并探究了在不确定性条件下系统的长期运行性能与储热特性。首先,在TRNSYS中建立了一个综合性的DBHE模型,涵盖热量提取、储存与恢复过程;随后,考虑不确定性因素之间的相关性,生成了20年的随机情景;然后通过长期动态仿真,评估了钻孔深度与太阳能集热能力共同作用下系统的运行行为。结果表明,在不确定性条件下,系统年度能源性能表现出显著波动,而确定性条件下的变化则相对稳定。在长期模拟中忽略不确定性可能导致对年度最大储热率的低估高达18.2%。当钻孔深度超过2,500米且太阳能集热器面积超过临界阈值时,集成深层BTES可使系统实现最高达66.9%的节能效果。研究还发现,临界集热器面积与钻孔深度之间存在普遍的负相关关系。此外,深层BTES对取热性能的提升在钻孔深度为2,000–2,200米和2,900–3,000米时更为显著,单位充入能量的取热量增益最高可达17.5%。本研究为中深层地热系统在真实运行条件下集成BTES的长期运行特性提供了有价值的理论依据与实践指导。
English Abstract
Abstract Integrating borehole thermal energy storage (BTES) into closed-loop medium-deep geothermal heating systems helps mitigate underground temperature decline and support sustainable operation. Existing research primarily focused on the heat storage performance of the deep borehole heat exchanger (DBHE) under deterministic conditions, neglecting the dynamic characteristics of the integrated system and multiple uncertainties. To address this gap, this study developed a solar-assisted deep borehole ground source heat pump system incorporating active heating, passive heating, and BTES , and investigated the long-term system performance and thermal storage characteristics under uncertainties. Firstly, a comprehensive DBHE model, considering heat extraction, storage, and recovery, was developed in TRNSYS. Subsequently, 20-year stochastic scenarios were generated considering uncertainty correlations. Long-term dynamic simulations were then performed to evaluate the system’s behavior under the combined effects of borehole depth and solar heat generation capacity. The results revealed significant fluctuations in annual energy performance under uncertainties, in contrast to the relatively stable variations observed under deterministic conditions. Ignoring uncertainties in long-term simulations could underestimate the annual maximum heat storage rate by up to 18.2 %. The integration of deep BTES achieved up to 66.9 % energy savings for the system when borehole depth exceeded 2,500 m and solar collector area surpassed critical thresholds. A generally negative correlation was observed between the critical collector area and borehole depth. Additionally, the benefits of deep BTES on heat extraction performance were more pronounced at borehole depths of 2,000–2,200 m and 2,900–3,000 m, with heat extraction gains of up to 17.5 % per unit of energy charged. This study provides meaningful insights into the long-term operational characteristics of medium-deep geothermal systems with BTES under real-world conditions.
S
SunView 深度解读
该深层地热储能系统与阳光电源ST系列储能变流器及PowerTitan储能方案具有协同价值。研究中的太阳能辅助热泵系统可与SG系列光伏逆变器耦合,形成光伏-地热-储能多能互补架构。其20年动态仿真方法论可借鉴至电化学储能系统的长周期性能预测,特别是不确定性分析对iSolarCloud平台的预测性维护算法优化具有启发意义。系统能效提升66.9%的成果验证了季节性储能的价值,可指导阳光电源在冷热电三联供场景下的ESS解决方案设计,推动储能系统从单一电力调节向综合能源管理延伸。