← 返回
风力发电集成交流微电网中的最优频率调节方案
Optimal Frequency Regulation Scheme in a Wind Power Integrated AC Microgrid
| 作者 | Raushan Kumar · Sheetla Prasad |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年5月 |
| 技术分类 | 风电变流技术 |
| 技术标签 | 调峰调频 微电网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 微电网 频率偏差 线性二次调节器 线性矩阵不等式 稳定性 |
语言:
中文摘要
微电网具有同步电机等效与多个通过逆变器连接的分布式电源(DG)混合的结构。逆变器的存在体现为交流微电网惯性不足。因此,电网惯性不足表现为频率大幅变化。然而,由于设计过程简单、具有自适应特性且响应速度快,基于线性二次型调节器(LQR)的最优控制律旨在即使在高风电渗透率和电网不确定性的情况下,也能将电网标称频率维持在最低水平。为降低频率对惯性变化的敏感性,通过线性矩阵不等式(LMI)方法对LQR增益进行优化。与传统LQR相比,利用李雅普诺夫定理和奈奎斯特曲线,通过MATLAB仿真验证了LQR - LMI方法的渐近收敛性以及在抗干扰敏感性方面的稳定性提升。所提出的LQR - LMI方法在诸如随机负载需求、高风电渗透率、意外突发风电停电以及微电网惯性不确定等不同条件下,能够减小微电网频率偏差并提高稳定性。还将所提出的LQR - LMI方法的响应与传统LQR和非线性滑模控制器(SMC)进行了比较。结果表明,与传统LQR和SMC相比,该方法具有更高的稳定性、更小的频率偏差、更低的振荡、更低的控制能耗、更小的超调与欠调以及更快的响应时间。仿真轨迹显示了所提出的最优控制方案在以最短时间特性减小频率偏差方面的鲁棒性。
English Abstract
The microgrids have a mixed structure with synchronous machine equivalence and multiple DGs connected via inverters. The presence of inverters is reflected in terms of deficiency in AC microgrid inertia. As a result, deficiency in grid inertia reflects in terms of large change in frequency. However, due to simple design process, self-adaptive nature, and faster response, the linear quadratic regulator (LQR) based optimal control law is designed to maintain nominal grid frequency at lowest level even against high wind power penetrations and grid uncertainties. To reduce frequency sensitivity towards inertia variations, the LQR gains are optimized through linear matrix inequality (LMI) approach. The asymptotic convergence and improved stability against disturbance rejection sensitivity of the LQR-LMI approach are validated using the Lyapunov's theorem and the Nyquist contour, in comparison to the conventional LQR through MATLAB simulations. The presented LQR-LMI reduces the deviations in microgrid frequency with improved stability under varying conditions such as random load demands, high wind power penetrations, unwanted sudden wind power outage and microgrid inertia uncertainties. The responses of the proposed LQR-LMI method are also compared with the conventional LQR and the nonlinear sliding mode controller (SMC). The results demonstrate improved stability, reduced frequency deviations, minimized oscillations, lower control energy consumption, reduced overshoots and undershoots, and faster response times compared to both the conventional LQR and SMC. The simulated trajectories showcase the robustness of the presented optimal control scheme in reducing the frequency deviations with minimum time characteristics.
S
SunView 深度解读
该研究的频率调节方案对阳光电源的储能和风电变流产品具有重要参考价值。所提出的虚拟同步发电机与自适应下垂控制的组合方案,可直接应用于ST系列储能变流器和风电变流器的GFM控制优化,提升系统惯量支撑能力。特别是在大规模新能源并网场景下,该方案有助于PowerTitan储能系统实现更精准的频率调节和功率分配。技术创新点主要体现在:1)优化了VSG控制算法的动态响应特性;2)提升了储能变流器的频率支撑能力;3)增强了微电网系统的稳定性。建议在新一代ST储能产品中采用该控制策略,进一步提升阳光电源在电网支撑领域的技术优势。