← 返回
储能系统技术 储能系统 ★ 5.0

基于动态规划的重力储能系统质量块堆叠最小能耗方法

Dynamic Programming-Based Mass Block Stacking Method of Gravity Energy Storage System for Minimum Energy Consumption

作者 Zufan Wang · Gaoyun Wu · Youkang Zhang · Tian Gao · Shuyang Fang · Julong Chen
期刊 IEEE Transactions on Industry Applications
出版日期 2025年5月
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 重力储能系统 质量块堆叠 能耗模型 动态规划 节能率
语言:

中文摘要

堆叠质量块(MB)是维持重力储能系统(GESS)运行的关键过程,该过程中的能耗直接影响综合效率。目前,基于轨道的质量块堆叠结构在承载能力和稳定性方面具有显著优势。然而,在重力储能系统的应用中,实现最低能耗仍是一项挑战。本研究首先针对给定用电条件(GEC)建立了一个完整堆叠过程的能耗模型。为实现最低能耗的目标,提出了一种基于动态规划的质量块最优数量和位置的堆叠方法。此外,还针对额外用电条件(AEC)引入了旁路结构及相关堆叠策略。其次,针对一个 5 兆瓦/20 兆瓦时的重力储能系统,设计了比例为 8:1、4:1、2:1 和 1:1 的堆叠场地结构。所提出的方法在给定用电条件下实现了 49.9%、41%、39%和 27%的平均节能率。当考虑额外用电条件时,观察到的节能率分别约为运行条件下的 36.5%、25.3%、23.5%和 24.7%。最后,搭建了一个基于轨道的质量块堆叠结构的实验室规模实验模型,并对 3 条轨道和 15 个质量块的任务进行了实验验证。结果表明,采用所提出的堆叠方法,在给定用电条件下可有效降低能耗,平均节能率为 41.1%。当考虑额外用电条件时,在确保具备堆叠额外质量块功能能力的同时,仅在某些情况下实现了能效提升。

English Abstract

Stacking the mass block (MB) is a key process in maintaining the operation of a gravity energy storage system (GESS), and the energy consumption during this process directly affects the comprehensive efficiency. Currently, the rail-based MB stacking structure has significant advantages in load-bearing capacity and stability. However, minimum energy consumption is still a challenge in the application of GESS. This study first establishes an energy consumption model for a completed stacking process for a given electricity condition (GEC). With the purpose of minimum energy consumption, a dynamic programming-based stacking method for the optimal number and position of MB is proposed. Moreover, a bypass structure and the related stacking strategy are also introduced for an additional electricity condition (AEC). Secondly, for a 5-MW/20-MWh GESS, stacking site structures with the ratios of 8:1, 4:1, 2:1, and 1:1 are designed. The proposed approach achieves the average energy-saving rate of 49.9%, 41%, 39%, and 27% under GEC. When AEC is considered, the observed energy savings are about 36.5%, 25.3%, 23.5% and 24.7% of operating conditions, respectively. Finally, a laboratory-scale experimental model of a rail-based MB stacking structure is built, and experiment validation is performed on a task of 3 rails and 15 MBs. The result shows that, with the proposed stacking method, the energy consumption can be effectively reduced under GEC, with an average energy-saving rate of 41.1% . When AEC is taken into account, energy efficiency improvements are realized only in some instances while ensuring the functional capability to stack additional MBs.
S

SunView 深度解读

该重力储能系统优化技术为阳光电源储能产品线提供新型储能方案参考价值。虽然阳光电源主营电化学储能系统(PowerTitan系列),但动态规划优化思路可借鉴至ST储能变流器的能量管理策略:1)多电池簇充放电路径优化,降低系统内部能耗;2)ESS集成方案中的模块化调度策略,通过动态规划实现最优功率分配;3)iSolarCloud平台可集成类似算法,对混合储能系统(电化学+机械储能)进行协调控制。该研究的多阶段决策建模方法对提升储能系统往返效率具有通用性,可应用于阳光电源储能变流器的智能调度算法开发,优化充放电路径规划,降低辅助系统能耗,提升整体系统效率。