← 返回
拓扑与电路 ★ 5.0

电能质量扰动识别

Recognition of Power Quality Disturbances

作者 Jiansheng Huang · Zhuhan Jiang · Michael Negnevitsky
期刊 IEEE Transactions on Industry Applications
出版日期 2025年6月
技术分类 拓扑与电路
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电能质量 干扰识别系统 特征提取 支持向量机 傅里叶变换
语言:

中文摘要

劣质电源可能会干扰通信网络、增加电力损耗、缩短电气/电子设备的使用寿命,并导致发电、输电、配电及终端用户系统出现各种故障。因此,一项关键任务是确定电网当前面临哪些电能质量问题,以及这些问题的模式和发生频率。电力公司和监管机构随后便可据此找出相应对策,以减轻这些影响。在本文中,作者提出了一种新颖的电能质量(PQ)扰动识别系统,该系统采用支持向量机和纠错输出码技术构建多分类器。此外,通过探寻电能质量扰动与相关傅里叶幅值和相位谱分量之间的联系,提出了一种基于傅里叶变换的特征提取方法。仿真结果表明,所开发的具有简化特征提取和线性分类器的电能质量扰动识别系统,在结构简易性、高预测精度和强鲁棒性方面,相较于其他同类系统表现更优。

English Abstract

Poor quality power supplies could interfere with communication networks, increase power losses, shorten lifespans of electrical/electronic equipment, and result in various malfunctions of power generation, transmission, distribution, and end-users’ systems. One of the crucial tasks, therefore, is to ascertain what quality problems that the power grids are currently suffering and what are the patterns and the occurring frequencies of them. Electric utilities and regulators could then find countermeasures accordingly to mitigate the impacts. In the paper, the authors present a novel power quality (PQ) disturbance recognition system with multiclass classifiers exercising techniques of support vector machines and error correcting output codes. Furthermore, a Fourier transform based feature extraction is proposed by finding the connection between the PQ disturbances and the relevant Fourier magnitude and phase spectral components. Simulations have shown that the developed PQ disturbance system with simplified feature extraction and linear classifiers can achieve superior performance compared with other counterparts in terms of simplicity of structure, high predictive precision and robust performance.
S

SunView 深度解读

该电能质量扰动识别技术对阳光电源多条产品线具有重要应用价值。在ST系列储能变流器中,可集成该识别框架实时监测电网侧电压暂降、谐波、闪变等扰动,优化主动支撑策略;在SG系列光伏逆变器中,可提升LVRT/HVRT故障穿越能力,通过精准识别扰动类型触发相应控制模式;在PowerTitan大型储能系统中,可增强iSolarCloud云平台的智能诊断功能,实现预测性维护;对于构网型GFM控制技术,该方法可辅助虚拟同步机VSG在弱电网环境下快速识别电网异常并调整控制参数。结合信号处理与智能算法的扰动识别框架,可显著提升阳光电源产品的电网适应性与系统可靠性,符合新型电力系统对高质量并网设备的要求。