← 返回
光伏发电技术 ★ 5.0

基于高分辨率航拍影像的表后分布式光伏面板分类识别与估算

Classified Identification and Estimation of Behind-the-Meter Distributed Photovoltaic Panels Using High-Resolution Aerial Imagery

作者 Kangping Li · Mingkai Gong · Zhenghui Li · Chunyi Huang
期刊 IEEE Transactions on Industry Applications
出版日期 2024年4月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式光伏 分类识别 K-means算法 U-net 尺寸估计
语言:

中文摘要

户用分布式光伏装机量的持续增长给配电网的运行带来了巨大挑战。利用高分辨率航空影像识别分布式光伏是一种很有前景且低成本的提高分布式光伏可见性的方法。现有研究通常建立统一的识别模型,在实际应用中,该模型无法对不同类型的分布式光伏实现令人满意的识别效果。为此,本文提出一种分类识别与估算方法,以准确获取广域范围内已安装光伏板的位置和规模。首先,采用 K 均值算法对不同规模和安装场景下的光伏板图像进行聚类。针对每个聚类,使用 U-net 构建识别模型,并采用焦点损失函数,以更好地识别微小尺寸的光伏板。其次,采用基于密度的聚类算法和直角多边形拟合算法对识别结果进行优化。最后,基于分割掩码估算光伏板的规模。在实际航空影像数据集上验证了所提方法的有效性。

English Abstract

The continuously increasing penetration of behind-the-meter distributed photovoltaics (PV) proposes significant challenges to the operation of distributed network. Identifying the distributed PV using high-resolution aerial image is a promising and low-cost way to enhance the visibility of distributed PV. Existing studies typically establish a unified identification model, which cannot achieve satisfactory identification performance for different types of distributed PV in practice. To this end, this paper proposes a classified identification and estimation method to accurately acquire the location and size of the installed PV panels within a wide area. Firstly, K-means algorithm is adopted to cluster PV panel images with different size and installation scenarios. For each cluster, U-net is then used to build identification models where focal loss is used as the loss function for better identification of tiny-size panels. Secondly, density-based clustering algorithms and right-angle polygon fit algorithm are employed to optimize the identification results. Finally, the size of PV panels is estimated based on the segmentation masks. The effectiveness of the proposed method has been validated on a real-world aerial imagery dataset.
S

SunView 深度解读

该航拍影像识别技术对阳光电源iSolarCloud智能运维平台具有重要应用价值。通过深度学习自动识别表后分布式光伏装置,可为SG系列逆变器的区域部署规划提供精准数据支撑,优化MPPT算法在复杂遮挡场景下的适配性。容量估算功能可辅助PowerTitan储能系统进行区域级配置优化,实现源网荷储协同调度。该方法与iSolarCloud平台融合后,能构建分布式光伏资产数字化地图,提升预测性维护精度,为电网公司提供虚拟电厂聚合管理的数据基础,增强阳光电源在分布式能源管理领域的系统解决方案竞争力。