← 返回
光伏发电技术 ★ 5.0

基于动态图网络与形状-幅值准则的分布式光伏超短期功率确定性与概率预测

A Distributed PV Ultra-short-term Power Deterministic and Probabilistic Forecasting Based on Dynamic Graph Network with Shape-amplitude Criteria

作者 Yuqing Wang · Zhen Zhao · Fei Wang · Shumin Sun · Yan Cheng · Ji Yu
期刊 IEEE Transactions on Industry Applications
出版日期 2025年9月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 分布式光伏功率预测 动态图网络 形状-幅度损失函数 时空相关性 分位数回归
语言:

中文摘要

准确预测分布式光伏发电功率对于确保有源配电网的安全稳定至关重要。然而,目前大多数关于分布式光伏发电功率预测的研究存在一定局限性,主要包括:1)对各发电站点之间动态相关性的考虑不足;2)缺乏能够同时使预测值的幅值和形状与真实值相匹配的训练损失函数。因此,本文提出一种基于形状 - 幅值损失函数的动态图网络分布式光伏超短期功率预测方法。首先,采用数据驱动的方法挖掘动态相关性,并生成动态图数据,以确保对分布式光伏之间的相关性进行有效表征。其次,构建动态图网络作为功率预测模型,以实现对时空相关特征的有效利用。然后,将结合了动态时间规整和均方误差的形状 - 幅值损失函数作为模型训练的准则,以确保预测值与真实值在形状和幅值上的一致性。同时,将动态图网络与分位数回归相结合,并借鉴形状 - 幅值的思想改进分位数损失函数。通过中国的一个分布式光伏发电功率数据集验证了所提方法的预测性能。

English Abstract

Accurate forecasting of distributed photovoltaic power plays a crucial role in ensuring the safety and stability of an active distribution network. However, most existing research on distributed photovoltaic power forecasting exhibits certain limitations, including: 1) insufficient consideration of the dynamic correlations among power sites; and 2) absence of a training loss function capable of simultaneously aligning the amplitude and shape of forecasting values with the true values. Therefore, a dynamic graph network with a shape-amplitude loss function based distributed photovoltaic ultra-short-term power forecasting method is introduced. Firstly, a data-driven method is used to mine the dynamic correlation and the dynamic graph data can be generated to ensure the effective characterization of the correlation among distributed photovoltaics. Secondly, the dynamic graph network is constructed as the power forecasting model to realize the effective utilization of spatial-temporal correlation features. Then, the shape-amplitude loss function which combines the Dynamic Time Warping and Mean Square Error is used as the criterion of model training to ensure the consistency of the forecasting value and the real in situ shape and amplitude. Meanwhile, the dynamic graph network is combined with quantile regression and the quantile loss function is improved inspired from the idea of shape-amplitude. The forecasting performance of the introduced approach is demonstrated via a distributed photovoltaic power dataset in China.
S

SunView 深度解读

该动态图网络预测技术对阳光电源iSolarCloud智能运维平台及SG系列逆变器群控系统具有重要应用价值。其形状-幅值准则可优化分布式光伏电站的功率预测精度,直接提升主动配电网调度能力。可应用于:1)iSolarCloud平台的超短期功率预测模块,通过挖掘多站点时空关联提升预测准确性;2)SG逆变器集群的协同控制策略,基于概率预测实现更优的有功无功调度;3)PowerTitan储能系统的充放电策略优化,利用确定性与概率联合预测降低弃光率并提升经济性。该技术的动态图建模思路可为阳光电源多能互补系统的智能调度算法提供创新方向。