← 返回
储能系统技术 ★ 5.0

一种增强型无源性控制在波浪能转换系统混合储能中的应用

An Enhanced Passivity-Based Control of Hybrid Energy Storage Applied to Wave Energy Conversion System

语言:

中文摘要

直驱式波浪能转换器(DDWEC)的输出功率本质上受实际海况影响,具有显著的间歇性。这种可变性给向负载提供稳定电力带来了挑战,进而使控制策略变得复杂。本文提出了一种用于含直驱式波浪能转换器和混合储能系统(HESS)的孤岛微电网应用的互联阻尼评估 - 基于无源性的控制器(IDA - PBC)。与其他控制方法不同,IDA - PBC 不将控制策略分为外环和内环,这使得控制策略更高效,能够确保系统稳定性。结合基于无源性的控制,本文提出了一种非线性干扰观测器(NDO),以增强系统在参数不匹配和负载条件变化时的鲁棒性。该控制器通过为超级电容器和电池的电流生成参考值,将直流母线电压维持在期望水平。混合储能系统用于解决波浪发电系统与直流负载之间平均功率和瞬时功率的差异问题。为验证其快速瞬态响应和抗干扰性能,本文给出了仿真和实验结果。

English Abstract

The output power of a direct-drive wave energy converter (DDWEC) is inherently influenced by the real sea state, resulting in significant intermittency. This variability poses challenges for maintaining a stable power supply to the load, thereby complicating control strategies. This paper presents the interconnection damping assessment-passivity based controller (IDA-PBC) for island microgrid applications with DDWEC and hybrid energy storage system (HESS). Unlike other control methods, IDA-PBC does not separate the control strategy into outer and inner loops. This allows for a more efficient control strategy to ensure system stability. In conjunction with passivity-based control, a nonlinear disturbance observer (NDO) is proposed to enhance the robustness of the system against parameter mismatches and variations in load conditions. This controller maintains the DC link voltage at the desired level by generating reference values for the current of the supercapacitor and the battery. HESS is utilized to address the difference in average and instantaneous power between the wave generation system and the DC load. To validate its rapid transient response and anti-disturbance performance, both simulation and experimental results are presented.
S

SunView 深度解读

该增强型无源性控制策略对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要借鉴价值。文章提出的超级电容-蓄电池混合储能架构与基于端口受控哈密顿模型的控制方法,可直接应用于光储、风储等新能源并网场景的功率平抑。其渐近稳定性保证与鲁棒控制特性,可增强阳光电源储能系统在电网扰动下的动态响应能力,优化ESS集成方案中的能量管理策略。该无源性控制思想亦可拓展至构网型GFM控制技术,提升虚拟同步机VSG在弱电网环境下的稳定裕度,为iSolarCloud平台的智能控制算法库提供理论支撑。