← 返回
一种带重复和PI环节的线性机器学习模型预测控制方法在三相逆变器中的应用
A Linear Machine Learning-Based Model Predictive Control With Repetitive and PI Elements for a Three-Phase Inverter
| 作者 | Jianwu Zeng · Wei Qiao |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年6月 |
| 技术分类 | 控制与算法 |
| 技术标签 | 三相逆变器 模型预测控制MPC 机器学习 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 机器学习 模型预测控制 线性方法 计算复杂度 自适应能力 |
语言:
中文摘要
现有的基于机器学习(ML)的模型预测控制(MPC)方法要么不如采用二次规划(QP)的在线优化MPC,要么计算复杂度高,无法在资源受限的数字信号处理器(DSP)中实现。本文通过使用线性ML方法并添加额外的可解释特征来解决这两个问题。首先,从理论上证明了由QP - MPC生成的训练数据具有内在线性,因此可以使用线性ML方法,如线性神经网络(LNN)和线性支持向量回归(LSVR)来捕捉训练数据集的线性特征。线性运算将计算复杂度从 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i>(2<italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><sup>n</sup></i>) 显著降低至 <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">O</i>(1),从而使其能够在DSP中实现。其次,将具有重复和比例积分(RPI)元素的额外特征作为输入添加到基于线性ML的MPC中。在线性和非线性负载条件下,对带有RPI元素的QP - MPC、LNN - MPC和LSVR - MPC进行了实验研究。结果表明,基于线性ML的MPC在电能质量和跟踪误差方面优于QP - MPC。此外,基于线性ML的MPC在参数不匹配和二自由度(2DOF)控制器的情况下表现也优于QP - MPC,证明了它们的自适应能力。本文还配有展示实时操作的视频。
English Abstract
Existing machine learning (ML) based model predictive control (MPC) methods are either inferior to the online optimized with quadratic programming (QP) MPC or have high computational complexity and cannot be implemented in the resource-limited digital signal processor (DSP). This paper solves these two issues by using linear ML methods and adding extra interpretable features. First, the intrinsic linearity of the training data generated by the QP-MPC has been theoretically proved such that the linear ML methods, e.g., linear neural network (LNN) and linear support vector regression (LSVR), can be used to capture the linearity characteristics of the training dataset. The linear operation significantly reduces the computational complexity from O(2n) to O(1) so that they can be implemented in the DSP. Second, extra features with the repetitive and proportional integral (RPI) elements are added as input to the linear ML-based MPCs. Experimental studies with QP-MPC, LNN-MPC, and LSVR-MPC with RPI elements are carried out under linear and nonlinear load conditions. The results show that linear ML-based MPCs are superior to the QP-MPC in power quality and tracking errors. Moreover, the linear ML-based MPCs outperform the QP-MPC under the parameter mismatch and two-degree-of-freedom (2DOF) controllers, demonstrating their adaptive capabilities. This article is accompanied by a video demonstrating the real-time operation.
S
SunView 深度解读
该线性ML-MPC技术对阳光电源ST系列储能变流器和SG系列光伏逆变器具有重要应用价值。通过线性化模型降低计算复杂度,可显著减轻控制器DSP/FPGA的运算负担,降低硬件成本;引入重复控制环节能有效抑制周期性谐波,提升并网电流THD性能,满足严格的电能质量标准;PI反馈增强的鲁棒性可应对电网阻抗波动和参数摄动。该方法特别适用于PowerTitan大型储能系统的多机并联场景,在保证快速动态响应的同时降低单机控制成本。相比传统QP-MPC,计算效率提升为实时控制周期缩短至微秒级提供可能,可支撑更高开关频率的SiC器件应用,推动阳光电源新一代高性能变流器产品开发。