← 返回
控制与算法 PWM控制 模型预测控制MPC ★ 5.0

改进的双矢量模型预测电流控制用于功率变换器的谐波最小化与开关频率降低

Improved Asymmetric Double-Vector Model-Predictive Current Control of Power Converters With Current Harmonic Minimization and Switching Frequency Reduction

作者
期刊 IEEE Transactions on Power Electronics
出版日期 2025年1月
技术分类 控制与算法
技术标签 PWM控制 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 双矢量模型预测电流控制 改进不对称双矢量MPCC 电流谐波 开关频率 总谐波畸变率
语言:

中文摘要

双矢量模型预测电流控制(MPCC)已得到广泛研究并应用于控制脉宽调制(PWM)整流器。近期研究表明,两个矢量的脉冲模式排列对其电流谐波和开关频率有显著影响,最佳模式是在矢量序列中间包含一个合适的零矢量,且非零矢量均匀分布在零矢量两侧;这种模式被称为传统对称双矢量MPCC(TSDV - MPCC)。本文提出了两种改进的非对称双矢量MPCC(IADV - MPCC)方法。在IADV - MPCC I中,对非零矢量的作用时间进行优化以实现最小的电流谐波;该策略不再保持零矢量两侧的对称分布特征。在IADV - MPCC II中,不仅对非零矢量的作用时间进行优化,还在高调制指数时通过放宽矢量组合为两个非零矢量来优化矢量序列。此外,还动态调整矢量序列以降低开关频率。将所提出的IADV - MPCC与一系列MPCC方法进行了比较,包括TSDV - MPCC、使用两个非零矢量的MPCC(MPC2)以及基于空间矢量调制的无差拍控制(DB - SVM)。实验结果证实,与TSDV - MPCC相比,在高调制指数下,电流总谐波畸变率(THD)和开关频率分别降低了48%以上和20%以上。与MPC2相比,电流THD降低了22.58%,同时保持了相近的开关频率。与DB - SVM相比,在高调制指数下,电流THD和开关频率分别降低了17%以上和15%以上。最后,所提出的IADV - MPCC与其他方法表现出相似的动态响应。

English Abstract

Double-vector model-predictive current control (MPCC) has been widely studied and applied to control pulsewidth modulated (PWM) rectifiers. A recent study showed that the pulse pattern arrangement of two vectors has a significant influence on their current harmonics and switching frequency, and the best pattern includes an appropriate zero vector in the middle of the vector sequence and a nonzero vector equally distributed on both sides of the zero vector; this paradigm is called traditional symmetric double-vector MPCC (TSDV-MPCC). This article proposes two improved asymmetric double-vector MPCC (IADV-MPCC) methods. In IADV-MPCC I, the duration of the nonzero vector is optimized to achieve minimal current harmonics; this strategy no longer maintains symmetric distribution features on both sides of the zero vector. In IADV-MPCC II, not only the duration of the nonzero vector is optimized; the vector sequence is also optimized by relaxing the vector combination to two nonzero vectors at high modulation indices. Furthermore, the vector sequence is dynamically adjusted to achieve a reduced switching frequency. The proposed IADV-MPCC is compared to a series of MPCC methods, including TSDV-MPCC, MPCC using two nonzero vectors (MPC2) and deadbeat control based on space vector modulation (DB-SVM). The experimental results confirm that, compared to TSDV-MPCC, the current total harmonic distortion (THD) and switching frequency are reduced by more than 48% and 20%, respectively, at high modulation indices. Compared to MPC2, the current THD is reduced by 22.58%, while maintaining a similar switching frequency. Compared to DB-SVM, the current THD and switching frequency are reduced by more than 17% and 15%, respectively, at high modulation indices. Finally, the proposed IADV-MPCC exhibits similar dynamic response to the other methods.
S

SunView 深度解读

从阳光电源的业务视角来看,该论文提出的改进型非对称双矢量模型预测电流控制(IADV-MPCC)技术对我司光伏逆变器和储能变流器产品具有重要应用价值。

该技术的核心创新在于通过优化矢量持续时间和序列排列,在高调制指数下实现电流总谐波畸变率(THD)降低48%以上,开关频率降低20%以上。这直接契合我司产品在高功率密度、高效率方向的技术演进需求。对于大型地面光伏电站和工商业储能系统,降低谐波畸变意味着更优的并网电能质量和更低的滤波器成本;降低开关频率则可显著减少IGBT/SiC功率器件的开关损耗,提升系统效率0.3-0.5个百分点,这在百兆瓦级项目中将产生可观的经济效益。

从技术成熟度评估,模型预测控制已在电力电子领域积累丰富的理论基础,该方案在保持动态响应性能的同时优化稳态指标,工程化难度适中。论文提供的实验验证数据表明技术可行性较高,可纳入我司下一代高压直挂储能系统和1500V光伏逆变器的控制算法研发路线图。

技术挑战主要集中在算法实时性方面。模型预测控制需要在每个控制周期内完成优化计算,对DSP/FPGA的算力要求较高,尤其在多电平拓扑和并联系统中计算复杂度会显著增加。此外,该方法对系统参数准确性依赖较强,需结合我司已有的参数在线辨识技术确保鲁棒性。

建议技术中心组织专项评估,重点验证该算法在SiC器件平台和复杂工况下的性能表现,探索与我司iSolarCloud平台的协同优化潜力,形成差异化竞争优势。