← 返回
电动汽车驱动
★ 4.0
不同掺氢率下燃气-蒸汽联合循环性能评估
Performance evaluation of the natural gas combined cycle with various hydrogen co-firing rates
| 作者 | Hyeonrok Choi · Youngjae Leea · Won Yang · Changkook Ryub · Seong-il Kim |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 341 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Evaluates hydrogen co-firing impacts on [GTCC plant](https://www.sciencedirect.com/topics/engineering/cycle-plant "Learn more about GTCC plant from ScienceDirect's AI-generated Topic Pages") performance. |
语言:
中文摘要
摘要 氢气是一种有前景的零碳燃料,可用于减少发电过程中的CO2排放,并正越来越多地被整合到燃气轮机联合循环(GTCC)系统中。本研究通过分析两种理想化的运行工况——固定透平入口温度(TIT)和固定燃气轮机(GT)输出——对一台600 MWe级GTCC电厂在掺氢燃烧条件下的热力性能进行了评估,并进一步提出了一种维持联合循环总输出恒定的负荷跟随策略。采用过程模拟模型,在三种环境条件下评估了氢气掺混对燃气轮机性能、烟气成分以及底部循环系统(包括余热锅炉(HRSG)和蒸汽轮机(ST))的影响。氢气掺烧带来性能上的权衡:由于燃烧特性改善,燃气轮机效率提高;但因HRSG传热性能下降,导致蒸汽轮机输出降低。在固定TIT工况下,燃气轮机效率提升的同时,蒸汽轮机输出仅有小幅下降。相反,在固定燃气轮机输出工况下,TIT和透平排气温度(TET)均下降,显著降低了蒸汽温度和蒸汽轮机输出,尤其在高氢气掺混比例时更为明显。在最低TIT条件下,性能劣化最为严重。为解决这一权衡问题,本文进一步设计了一种通过调节TIT来调整燃气轮机与蒸汽轮机之间的功率分配,从而保持GTCC总输出恒定的运行方案。该方案实现了最高达0.72个百分点的热效率增益。所提出的模型综合考虑了辐射与对流传热机制,准确捕捉了富氢燃烧气体的关键热物理效应,为氢气掺烧条件下GTCC系统的稳定高效运行提供了切实可行的技术参考。
English Abstract
Abstract Hydrogen is a promising carbon-free fuel for reducing CO 2 emissions in power generation and is increasingly being integrated into gas turbine combined cycle (GTCC) systems. This study evaluates the thermal performance of a 600-MWe-class GTCC plant under hydrogen co-firing by analyzing two idealized operational scenarios—fixed turbine inlet temperature (TIT) and fixed gas turbine (GT) output—and additionally proposes a load-following strategy that maintains constant total GTCC output. A process simulation model was used to assess the impact of hydrogen blending on GT performance, flue gas composition, and the bottoming cycle—including the heat recovery steam generator (HRSG) and steam turbine (ST)—under three ambient conditions. Hydrogen co-firing introduced a performance trade-off: GT efficiency improved due to favorable combustion properties, while ST output decreased owing to degraded HRSG heat transfer. Under the fixed TIT scenario, GT efficiency increased with minor reductions in ST output. In contrast, under fixed GT output, TIT and turbine exit temperature (TET) declined, significantly reducing steam temperature and ST output, especially at high hydrogen blending ratios. The greatest performance degradation occurred under the lowest TIT condition. To address this trade-off, an additional scenario was developed by regulating TIT to adjust the GT/ST power split and maintain constant GTCC output. This approach resulted in thermal efficiency gains of up to 0.72 percentage points. The proposed model incorporates radiative and convective heat transfer mechanisms and captures the key thermophysical effects of hydrogen-rich combustion gas, offering practical insights for stable and efficient GTCC operation under hydrogen co-firing conditions.
S
SunView 深度解读
该氢气掺烧燃气轮机研究对阳光电源综合能源系统具有重要参考价值。氢储能与ST系列储能变流器结合可构建电-氢-电耦合系统,通过电解槽制氢消纳光伏过剩电力,掺氢燃气发电调峰时可利用PowerTitan储能系统平抑功率波动。研究中的负荷跟踪策略与阳光电源GFM控制技术理念契合,可优化多能互补微网的动态响应。iSolarCloud平台可集成氢掺比优化算法,实现燃气-储能-光伏协同调度,提升综合能效最高0.72个百分点,为零碳园区解决方案提供技术支撑。