← 返回
基于分布式观测器的弹性优化控制在虚假数据注入攻击下的DESSs中的应用
Distributed Observer-Based Resilient Optimization Control for DESSs Under False Data Injection Attacks
| 作者 | Yajie Jiang · Yici Wang · Eddy Y. S. Foo · Yun Yang |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2025年3月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 分布式储能系统 自动约束凸优化算法 虚假数据注入攻击 分布式扩展观测器 协同优化控制框架 |
语言:
中文摘要
在设计分布式储能系统(DESSs)的协同控制策略时,传统凸优化算法往往会导致次优解和过流问题。为应对这些挑战并实现多个分布式储能系统的功率损耗最小化,本文提出了一种自动约束凸优化算法(ACCOA)。该算法通过在评估过程中引入惩罚函数改进了传统方法,确保在算法迭代过程中自动满足不等式约束条件。所提出的ACCOA仅促进相邻分布式储能系统之间的通信,具有可扩展性和鲁棒性优势。然而,在优化过程中,分布式电流分配容易受到虚假数据注入(FDI)攻击。为减轻这一脆弱性,本文开发了一种分布式扩展观测器(DESO)来检测和抵消攻击信号,从而增强二级控制器对FDI攻击的抵御能力。本研究最终构建了一个用于分布式储能系统协同优化的增强弹性控制框架,并通过仿真和OPAL - RT实验验证了ACCOA - DESO在多分布式储能系统中的有效性。
English Abstract
When designing cooperative control strategies for distributed energy storage systems (DESSs), traditional convex optimization algorithms often lead to sub-optimization, and overcurrent issues. To address these challenges and achieve power loss minimization across multiple DESSs, this paper proposes an automatic constraint convex optimization algorithm (ACCOA). ACCOA enhances traditional methods by incorporating a penalty function into the evaluation process, ensuring automatic satisfaction of inequality constraints during algorithm iterations. The proposed ACCOA facilitates communication solely between neighboring DESSs, offering scalability and robustness advantages. However, in the optimization process, distributed current allocation becomes susceptible to false data injection (FDI) attacks. To mitigate this vulnerability, a distributed extended observer (DESO) is developed to detect and counteract attack signals, thereby enhancing resilience against FDI attacks in secondary controllers. This research culminates in a resilient-enhanced control framework for cooperative optimization among DESSs, validated through simulations and OPAL-RT experiments to demonstrate the effectiveness of ACCOA-DESO in a multi-DESS system.
S
SunView 深度解读
该弹性优化控制技术对阳光电源ST系列储能变流器和PowerTitan大型储能系统具有重要应用价值。针对分布式储能系统面临的虚假数据注入攻击威胁,基于分布式观测器的鲁棒状态估计方法可直接应用于ST储能系统的通信安全防护,增强iSolarCloud云平台的数据可信度。该技术结合一致性算法的抗攻击机制,可优化PowerTitan系统中多储能单元的协同控制策略,在保障网络安全的同时实现全局功率优化和SOC均衡。对于阳光电源构网型GFM控制技术,该弹性控制框架可提升分布式储能电站在复杂电网环境下的抗干扰能力,为大规模储能集群的安全稳定运行提供理论支撑和技术保障。