← 返回
实时市场中便携式储能运行的预测-处方框架
A Predictive-Prescriptive Framework for Portable Energy Storage Operation in Real-Time Market
| 作者 | Xinjiang Chen · Xiupeng Chen · Feng Gao |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2024年5月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 便携式储能系统 实时市场 预测 - 规范框架 实时电价预测 库存路径规划 |
语言:
中文摘要
便携式储能系统(PESS)是一种具有灵活部署方案的、前景广阔的储能商业模式。它有潜力塑造一个低碳且可持续的能源与交通系统。然而,在能量套利应用中,已证明使用由已知日前市场价格确定的PESS方案参与实时市场会导致显著的收益偏差。为解决上述问题,我们开发了一个用于PESS在实时市场运行的预测 - 规定性框架,该框架结合了实时市场价格预测和PESS的库存路径规划。对于实时市场价格预测,我们提出了一种基于NuralProphet和极端梯度提升(XGBoost)的误差校正混合预测模型。关于PESS的库存路径规划,我们开发了一个考虑电池退化的PESS数学模型。在案例研究中,我们将所提出的框架应用于评估2018年PESS在加利福尼亚独立系统运营商(CAISO)实时市场中的盈利能力。研究结果表明,与传统方法相比,该预测 - 规定性框架可将平均收益偏差大幅降低至4.4%,并将评估准确性提高14.6%。该预测 - 规定性框架有望为能源与交通领域耦合应用中的电池资产管理提供决策支持。
English Abstract
Portable Energy Storage System (PESS) represents a promising business model of energy storage with flexible deployment options. It has the potential to shape a low-carbon and sustainable energy and transportation system. In the energy arbitrage applications, however, it has been proved that using the PESS schemes determined by the known day-ahead market prices to participate in the real-time market will lead to significant revenue deviation. To tackle the above problem, we develop a predictive-prescriptive framework for PESS operation in real-time market, which incorporates the real-time market price prediction and inventory routing planning of PESS. For real-time market price prediction, we propose an error-corrected hybrid forecasting model based on NuralProphet and eXtreme Gradient Boosting (XGBoost). Regarding the inventory routing planning of PESS, we develop a mathematical model for PESS considering battery degradation. In the case study, we apply the proposed framework to assess the profitability of PESS in the real-time market of California Independent System Operator (CAISO) in 2018. The findings indicate that the predictive-prescriptive framework can substantially reduce average revenue deviation to 4.4%, and improves evaluation accuracy by 14.6% compared to conventional methods. The predictive-prescriptive framework is expected to provide decision supports for managing battery assets in applications coupled energy and transportation sectors.
S
SunView 深度解读
从阳光电源储能系统业务视角来看,该论文提出的便携式储能系统(PESS)预测-决策框架具有重要的战略参考价值。这一技术方案针对移动储能在实时电力市场中的套利优化问题,通过融合NeuralProphet和XGBoost的混合预测模型,将收益偏差降至4.4%,显著提升了储能资产的经济性评估精度。
对于阳光电源而言,这项研究揭示了几个关键业务机遇。首先,移动储能代表了储能商业模式的创新方向,与公司现有的PowerTitan系列集装箱储能系统形成技术协同。通过引入实时市场价格预测和库存路径规划算法,可以显著增强储能系统在能源套利场景下的盈利能力,这对拓展电网侧和工商业侧储能市场具有直接价值。其次,论文考虑的电池衰减建模与阳光电源在电池管理系统(BMS)和能量管理系统(EMS)方面的技术积累高度契合,可为产品优化提供量化工具。
从技术成熟度看,该框架在CAISO市场的验证表明其实用性,但向国内电力市场迁移仍面临挑战:中国实时电力市场机制尚在完善阶段,价格波动特征与成熟市场存在差异。此外,移动储能涉及能源与交通跨界融合,需要突破运输成本优化、多场景调度协同等工程难题。
建议阳光电源将此类预测-优化技术纳入智慧能源管理平台的研发路线图,特别关注"新能源+储能"场景下的多时间尺度优化调度,同时跟踪国内电力现货市场试点进展,为移动储能等创新业务模式储备技术能力,抢占新型储能系统的市场先机。