← 返回
拓扑与电路 ★ 4.0

基于ALBERT-BiLSTM-CRF的变压器套管故障中文命名实体识别

Chinese Named Entity Recognition of Transformer Bushing Faults Based on ALBERT-BiLSTM-CRF

作者 Lijun Jin · Yufang Zhang · Zhikang Yuan · Shuojie Gao · Miaosong Gu · Xianhui Liu
期刊 IEEE Transactions on Industry Applications
出版日期 2024年12月
技术分类 拓扑与电路
相关度评分 ★★★★ 4.0 / 5.0
关键词 变压器套管 故障识别 ALBERT-BiLSTM-CRF 运维效率 文本处理
语言:

中文摘要

随着新型电力系统的数字化转型升级,传统电力设备对智能化功能的需求不断增加。套管作为变压器的关键设备之一,仍面临事故难以预测等问题,迫切需要采用数字化手段提高变压器套管的运维效率。目前,运维人员已以文本形式积累了大量变压器套管运行经验,但这些文本中的故障描述专业性强且因人而异,给机器自动进行故障识别带来了挑战。本文提出一种基于 ALBERT - BiLSTM - CRF 的中文变压器套管故障识别方法。首先,基于已发表的论文、故障报告、分析资料、记录和标准构建变压器套管故障数据集。其次,将文本转换为字符序列,并通过 ALBERT 模型对语义信息进行编码,以获取输入序列的向量。然后,利用 BiLSTM 网络捕捉上下文信息。最后,采用 CRF 获取相邻标签之间的依赖关系,并预测每个字符的标签。结果表明,ALBERT - BiLSTM - CRF 能够有效识别中文套管故障语料中的实体,F1 分数达到了令人瞩目的 96.60%,优于常用模型。

English Abstract

With the digital transformation and upgrading of new power system, the demand for intelligent functionalities in traditional power equipment has increased. As one of the key equipment of transformers, bushings still encounter issues such as unpredictable accidents. There is an urgent need to employ digital methods to enhance the operation and maintenance efficiency of transformer bushings. Currently, operators have accumulated a substantial amount of experience on transformer bushing operation in the form of text. However, fault description in this text is highly specialized and varies from person to person, posing challenges for automated fault recognition by machines. This paper proposes a Chinese transformer bushing fault recognition method based on ALBERT-BiLSTM-CRF. First, a dataset of transformer bushing faults is constructed based on published papers, fault reports, analyses, records and standards. Next, the text is converted into a character sequence, and the semantic information is encoded through the ALBERT model to obtain the vector of the input sequence. Then, the BiLSTM network is used to capture contextual information. Finally, CRF is employed to obtain the dependencies between adjacent labels and predict the label of each character. The results demonstrate that ALBERT-BiLSTM-CRF effectively recognizes entities in Chinese bushing fault corpus, achieving an impressive F1 score of 96.60%, surpassing commonly used models.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于ALBERT-BiLSTM-CRF的变压器套管故障识别技术具有重要的借鉴价值和应用潜力。虽然研究聚焦于传统电力变压器领域,但其核心方法论可直接迁移至我司光伏逆变器、储能变流器等核心设备的智能运维体系中。

该技术的核心价值在于将非结构化的中文故障文本转化为可机器识别的实体信息,F1分数达96.60%的准确率已接近工程应用水平。对于阳光电源而言,我们在全球部署了数百万台光伏逆变器和大量储能系统,积累了海量的运维报告、故障记录和技术文档。这些中文文本资料专业性强、描述方式多样,与论文中描述的套管故障文本特征高度相似。通过引入该命名实体识别技术,可以自动提取故障类型、设备部件、异常现象等关键信息,构建结构化的知识图谱,显著提升智能诊断系统的效率。

从技术成熟度评估,ALBERT模型的轻量化特性适合边缘计算场景,BiLSTM-CRF的组合架构已在NLP领域得到充分验证。但应用挑战在于:一是需要构建光伏储能领域专属的标注语料库,这需要领域专家的深度参与;二是模型的实时性能否满足分布式电站的快速响应需求;三是多语言场景的适配问题,考虑到我司海外业务占比较高。

建议将此技术纳入数字化运维平台的研发路线图,优先在国内大型地面电站和储能项目试点,逐步构建覆盖设备全生命周期的智能知识管理系统,这将成为提升服务竞争力的重要技术支撑。