← 返回
氢能与燃料电池
★ 4.0
基于新型波浪形流道的大规模质子交换膜燃料电池堆功率性能提升研究
Study on the power performance improvement of a large-scale proton exchange membrane fuel cell stack with novel wavy flow channels
| 作者 | Qi Liua · Zijian Zhaoa · Zhe Lina · Haifeng Wangb · Yunchao Yuanb |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 342 卷 |
| 技术分类 | 氢能与燃料电池 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Power performance of a [PEMFC stack](https://www.sciencedirect.com/topics/engineering/fuel-cell-stack "Learn more about PEMFC stack from ScienceDirect's AI-generated Topic Pages") with novel wavy flow channels was studied. |
语言:
中文摘要
流道结构的优化对于质子交换膜燃料电池(PEMFC)在提升功率性能过程中的热能与能量管理至关重要。本研究分析了在双极板中设计的新型波浪形流道对大规模PEMFC电堆功率性能的改善效果。该新型波浪形流道的特点在于氢气与空气波浪形流道在空间上的重叠布置,以及双极板中气体通道与冷却剂通道的非对称几何结构。通过实验评估了采用波浪形流道的大规模PEMFC电堆的功率密度。建立了三维耦合数值模拟模型,用于研究流动动力学、传热传质及电能输出特性。在不同冷却剂温度(60 °C至80 °C)条件下,对比讨论了气体流速与摩尔浓度、不同相态水含量、温度与质子导电率、以及相应界面上电能输出的详细分布特征。结果表明,波浪形流道中产生了空气流动的间歇性速度模式,该机制有助于增强电化学反应过程中的气体传输,从而提高PEMFC电堆的功率密度。质子交换膜中的质子导电率被发现对较高的冷却剂温度较为敏感。揭示了氢气与空气流道之间由冷却剂通道引起的传热效应。推导并分析了欧姆热源、反应热源以及各类熵产项。研究结果表明,采用新型波浪形流道并结合80 °C较高冷却剂温度的PEMFC电堆,能够有效降低欧姆热源、反应热源以及各类熵产水平。
English Abstract
Abstract Optimization of the flow channel structure is crucial for thermal and energy management in the improvement of power performance in a proton exchange membrane fuel cell (PEMFC). In this study, the power performance improvement of a large-scale PEMFC stack with the designed novel wavy flow channels in bipolar plates was analysed. This novel wavy flow channels were featured by the spatial overlapped hydrogen and air wavy channels, and asymmetric geometries of gas and coolant channels in bipolar plates. The power density of this large-scale PEMFC stack with wavy flow channels was assessed through experiments. A three-dimensional coupled numerical simulation model was built to investigate characteristics of flow dynamics, heat and mass transfer and electric energy. Detailed distribution characteristics of the gas flow velocities and molar concentrations, water in different phases, temperature and proton conductivity, electric energy at corresponding interfaces under different coolant temperatures (from 60 °C to 80 °C) were comparatively discussed. The intermittent velocity mode of the air flow was produced in the wavy flow channel, which served as the mechanism of enhancing the gas transfer during electrochemical reaction and thereby improving power density of the PEMFC stack. The proton conductivity at the proton exchange membrane was shown sensitive to a high coolant temperature. The effect of heat transfer by the coolant channels between the hydrogen and air flow channels were revealed. The ohmic heat source, reaction heat source and various types of entropy generations were derived for analysis. Results showed that the PEMFC stack with novel wavy flow channels and a higher coolant temperature of 80 °C could effectively decrease the ohmic heat source, reaction heat source and various types of entropy generations.
S
SunView 深度解读
该PEMFC波浪流道优化技术对阳光电源氢能储能系统具有重要借鉴价值。研究中的热管理策略(60-80°C冷却温度优化)可应用于ST系列PCS的液冷系统设计,通过流道结构创新降低欧姆热源和熵产生。波浪流道产生的间歇速度模式增强传质的机制,可启发PowerTitan储能系统的散热通道优化,提升功率密度。三维耦合仿真方法论可用于EV充电桩的热电耦合分析,优化大功率充电模块的温控性能,支撑iSolarCloud平台的预测性维护算法开发。