← 返回
用于提升高压-中压配电网韧性的储能系统协调分布鲁棒优化配置
Coordinated Distributionally Robust Optimal Allocation of Energy Storage System for HV-MV Distribution Network Resilience Enhancement
| 作者 | Kuan Cao · Yutian Liu · Chunyi Wang |
| 期刊 | IEEE Transactions on Industry Applications |
| 出版日期 | 2024年11月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 储能系统 分布式鲁棒优化 光伏负荷场景 弹性与经济平衡 选址定容 |
语言:
中文摘要
为解决高渗透率光伏接入的高压(HV)和中压(MV)配电网在极端和正常场景下的功率不平衡问题,本文提出一种兼顾韧性与经济性的储能系统(ESS)分布鲁棒优化配置方法。首先,鉴于提升韧性与储能选址密切相关,采用选址 - 定容顺序更新方法,基于规划韧性指标进行储能选址。其次,为生成具有连续标签的正常和极端光伏 - 负荷场景,通过引入条件神经网络对结合迁移学习的对抗自编码器(AAE)进行改进。基于改进的 AAE 和聚类技术,构建基于 Kullback - Leibler 散度的模糊集来表征光伏和负荷的联合概率分布。第三,考虑高压 - 中压配电网的边界信息交互,建立两阶段协调分布鲁棒优化模型进行储能定容。在该模型中,高压配电网中的集中式储能参与调频和削峰,中压配电网中的分布式储能以四象限模式调节电压分布。为进一步提升韧性,将考虑极端场景的运行韧性指标作为机会约束嵌入模型。第四,将 C&CG 算法嵌套到解析目标级联方法中对模型进行求解。最后,算例分析表明,所提方法能够有效平衡韧性提升与经济运行。
English Abstract
To solve the problem of power imbalance under extreme and normal scenarios in high voltage (HV) and middle voltage (MV) distribution networks with high penetrations of photovoltaic (PV), the paper proposes a distributionally robust optimal allocation method of energy storage system (ESS) for equilibrating resilience and economy. Firstly, due to the strong relation between resilience enhancement and ESS location, the siting-sizing sequential updating method is adopted to site ESS based on the planning resilience indexes. Secondly, to generate normal and extreme PV-load scenarios with continuous labels, an adversarial autoencoder (AAE) combined with transfer learning is improved by introducing the conditional neural network. Based on the improved AAE and clustering techniques, a Kullback-Leibler divergence-based ambiguity set is constructed to characterize the joint probability distribution of PV and load. Thirdly, considering the boundary information interaction of HV-MV distribution networks, a two-stage coordinated distributionally robust optimization model is established to size ESS. In the model, centralized ESS in HV distribution network participates in frequency regulation and peak shaving while distributed ESS in MV distribution network regulates voltage profiles in the four-quadrant mode. For further improving resilience, an operational resilience index as a chance constraint considering extreme scenarios is embedded into the model. Fourthly, the C&CG algorithm is nested into the analytical target cascading method to handle the model. Finally, case studies show that the proposed method can effectively balance resilience enhancement and economic operation.
S
SunView 深度解读
从阳光电源的业务视角来看,这项针对高中压配电网储能系统优化配置的研究具有重要的战略价值。该技术通过分布式鲁棒优化方法,系统性地解决了高比例光伏渗透下电网韧性与经济性的平衡问题,这与我司"光储一体化"解决方案的核心诉求高度契合。
该研究的技术亮点在于三个层面:首先,采用选址-定容序贯更新方法,为储能系统的规划部署提供了科学依据,这可直接指导我司PowerTitan、PowerStack等储能产品的项目前期规划;其次,基于对抗自编码器和迁移学习生成极端场景,能更精准评估光伏出力波动对电网的冲击,这对我司光伏逆变器的主动支撑功能优化具有参考价值;第三,提出的高中压协调优化框架,其中集中式储能参与调频调峰、分布式储能四象限调压的分层控制策略,与我司多层级能量管理系统架构形成良好映射。
从技术成熟度评估,该方法涉及的分布式鲁棒优化和场景生成技术已有理论基础,但工程化实施仍面临挑战:实时计算复杂度、海量数据处理能力、以及与现有EMS系统的集成适配性都需要深入验证。对阳光电源而言,这恰好是机遇所在——我司可将该算法框架嵌入iSolarCloud智慧能源管理平台,结合实际项目数据进行迭代优化,形成具有自主知识产权的储能规划工具,提升系统解决方案的差异化竞争力。特别是在"双碳"目标下,电网对韧性和经济性的双重需求日益迫切,该技术可为我司开拓大型源网荷储项目提供核心技术支撑。