← 返回
储能系统技术 储能系统 ★ 5.0

锂离子电池充电策略优化:基于异构集成代理模型的先进多目标优化算法

Charging strategies optimization for lithium-ion battery: Heterogeneous ensemble surrogate model-assisted advanced multi-objective optimization algorithm

语言:

中文摘要

摘要 缩短充电时间(CT)同时维持锂离子电池(LIBs)的热安全与健康状态管理,对于提升电动汽车的实用性至关重要。然而,传统的基于机理的充电策略优化方法存在计算负担重、搜索空间高维以及多目标冲突等问题,导致其在广泛应用中面临瓶颈。为克服上述问题,本文首先构建了一种基于机理的电-热-老化耦合模型用于数据集生成。随后,提出一种基于元特征的异构集成代理模型(MetaHES),以更好地适应在荷电状态分阶段恒流充电(SMCC)策略下多样化的充放电性能特性。此外,引入一种改进的约束多目标哈里斯鹰优化算法,结合双种群机制与基于理想点的进化环境选择策略(CDMHUE)。最后,在LCO18650电池上的验证与应用揭示了若干重要发现:实验数据证实了机理模型的准确性,综合对比实验验证了MetaHES中各组成部分的有效性及其整体优越性。其合理的设计使其能够高效应对锂离子电池数据集中存在的多样性、小样本及非时序性等挑战。此外,基于MetaHES的CDMHUE成功优化了SMCC充电策略,相较于基于机理模型的CDMHUE,计算效率提升了两个数量级以上,并优于其他五种对比算法。三种优化后的充电策略相比对应的恒流恒压充电策略,在健康状态衰减、充电时间及最高温升方面均有所降低。本研究为电池管理系统中的预测与健康管理提供了新的视角。

English Abstract

Abstract Reducing charging time (CT) while maintaining thermal safe and health management of lithium-ion batteries (LIBs) is essential for enhancing the portability of electric vehicles. However, the substantial computational burden, high-dimensional search spaces and multi-objective conflicts traditional mechanism-based charging strategy optimization methods introduce bottlenecks across a wide range of applications. To overcome these issues, a mechanism-based electrothermal-aging model is first developed for dataset generation. Subsequently, a meta -features-based heterogeneous ensemble surrogate model (MetaHES) is proposed to better accommodate the diverse charge–discharge performance characteristics under State-of-Charge multi-stage constant current charging (SMCC) strategy. Additionally, an improved constrained multi-objective Harris Hawks Optimization algorithm, combined with dual-population and utopian point-based evolutionary environmental selection (CDMHUE), is introduced. Finally, verification and application on the LCO18650 Battery revealed several important findings: Experimental data confirm the accuracy of the mechanism model, while comprehensive comparison experiments validate both the effectiveness of each component and the overall superiority of MetaHES. Its rational design enables it to efficiently address challenges in LIB datasets, such as diversity, small-sample, and non-temporal characteristics. Additionally, the MetaHES-based CDMHUE optimizes SMCC strategies, improving computational efficiency by over two orders of magnitude compared to the mechanism-based CDMHUE and outperforming five other algorithms. The three optimized strategies reduce state of health attenuation, CT, and maximum temperature rise compared to corresponding constant current and constant voltage charging strategy. This work provides a novel perspective for prognostics and health management in battery management systems.
S

SunView 深度解读

该锂电池充电策略优化技术对阳光电源储能系统和充电桩产品具有重要应用价值。其异构集成代理模型可显著降低ST系列PCS和PowerTitan储能系统的电池管理算法计算负担,多目标优化算法能在充电时间、热安全和电池寿命间实现最优平衡。特别是多阶段恒流充电策略可直接应用于EV充电站快充技术,提升充电效率两个数量级。该方法为iSolarCloud平台的电池健康预测性维护提供新思路,可增强储能系统全生命周期管理能力,降低运维成本。