← 返回
拓扑与电路 ★ 4.0

基于片上嵌入式温度传感器在高电流密度下微凸点电迁移诱导退化的表征

Characterization of Electromigration-induced degradation in Micro Bumps Via On-Chip Embedded Temperature Sensors Under High Current Density

作者 Zhenwen Pu · Yuexing Wang · Linwei Cao · Jichao Qiao · Xiangyu Sun
期刊 IEEE Transactions on Components, Packaging and Manufacturing Technology
出版日期 2025年5月
技术分类 拓扑与电路
相关度评分 ★★★★ 4.0 / 5.0
关键词 微凸块 电迁移 焦耳热效应 失效机制 应力集中
语言:

中文摘要

本研究通过实验与计算相结合的方法,研究了微凸点中电迁移引起的退化问题。在倒装芯片试样中嵌入了铂薄膜温度传感器,以实现实时热监测。利用这些传感器测量封装内部温度,并通过红外热成像进行验证,从而定量表征高电流密度条件下的焦耳热效应。对经过加速电流应力测试的试样进行横截面扫描电子显微镜(SEM)分析后发现,在电热耦合环境中,电迁移会引发两种并发的失效机制:(1)空洞在金属间化合物(IMC)/焊料界面形核并扩展;(2)焊料加速消耗导致的缩颈现象。本研究开发了一个多物理场建模框架,将统一蠕变塑性(UCP)本构定律与J积分断裂力学方法相结合,以模拟含有电迁移诱发空洞的微凸点中的剪切变形演化。计算结果表明,空洞扩展会破坏静水应力的均匀性,在焊料耗尽区域附近引发局部应力集中。至关重要的是,与IMC界面空洞相比,焊料消耗诱发的空洞表现出更高的应力强化,这直接建立了空洞拓扑结构与机械可靠性退化之间的关联。

English Abstract

This study investigates electromigration-induced degradation in micro bumps through an integrated experimental and computational approach. Platinum thin-film temperature sensors were embedded within flip-chip specimens to enable real-time thermal monitoring. Internal package temperatures were measured using these sensors, with validation via infrared thermography, to quantitatively characterize Joule heating effects under high-current-density conditions. Cross-sectional SEM analysis of specimens subjected to accelerated current stressing revealed that electromigration drives two concurrent failure mechanisms in electro-thermal coupling environments: (1) void nucleation-propagating along IMC/solder boundaries, and (2) necking caused by accelerated solder consumption. A multi-physics modeling framework combining unified creep plasticity (UCP) constitutive laws with the J-integral fracture mechanics method was developed to simulate shear deformation evolution in micro bumps containing electromigration-induced voids. Computational results demonstrated that void propagation disrupts hydrostatic stress uniformity, inducing localized stress concentrations near solder-depleted regions. Crucially, solder consumption-induced voids exhibited higher stress intensification compared to IMC-interface voids, establishing a direct correlation between void topology and mechanical reliability degradation.
S

SunView 深度解读

从阳光电源功率电子产品的可靠性角度审视,该研究针对微凸点电迁移失效的表征方法具有重要参考价值。在光伏逆变器和储能变流器等核心产品中,功率模块的封装互连结构长期承受高电流密度和温度循环应力,电迁移导致的微观失效是影响系统25年以上生命周期的关键因素。

该论文提出的片上嵌入式温度传感技术为我们提供了实时监测封装内部热状态的新思路。当前阳光电源产品依赖外部热管理系统,但功率器件内部的局部热点难以精确捕捉。集成铂薄膜传感器可实现焊点级温度监控,这对于1500V高压系统和大电流储能PCS的热设计优化具有突破性意义,能够建立更精准的热-电-机械多物理场仿真模型。

研究揭示的两类失效机制——界面空洞扩展和焊料消耗导致的颈缩现象——与我们在SiC模块长期可靠性测试中观察到的现象高度吻合。特别是焊料消耗型空洞引发的应力集中更为严重,这为优化焊料合金配方和IMC层厚度控制提供了理论依据。结合统一蠕变塑性本构模型和J积分断裂力学的仿真框架,可直接应用于我们新一代高功率密度逆变器的封装设计验证。

技术挑战在于传感器集成的成本控制和批量制造一致性,以及如何将监测数据转化为预测性维护策略。建议与封装供应商合作开展定制化开发,优先在MW级储能系统等高价值产品中试点应用,通过实时失效预警提升系统可用性,这将成为阳光电源差异化竞争的技术优势。