← 返回
基于原位形成AgIn₂涂层的铟热界面材料无助焊剂键合技术研究
Investigation on Indium Thermal Interface Materials Fluxless Bonding Technology via In Situ Formed AgIn₂ Coating
| 作者 | Jing Wen · Yi Fan · Guoliao Sun · Jinyang Su · Linzheng Fu · Zhuo Chen |
| 期刊 | IEEE Transactions on Components, Packaging and Manufacturing Technology |
| 出版日期 | 2024年12月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 铟热界面材料 无焊剂回流 低空洞率 银铟2涂层 热传递能力 |
语言:
中文摘要
铟(In)是高功率中央处理器(CPU)芯片广泛采用的焊料热界面材料(TIM1),这主要是因为它能提升散热性能。然而,在焊球回流过程中,被困在铟焊料内的有机助焊剂残留物会释放气体,导致铟TIM1中产生大量空洞(空洞率约35%),这限制了其在先进球栅阵列(BGA)封装中的应用。在本文中,为实现无助焊剂铟回流并获得低空洞率的铟TIM1,在厚铟TIM1表面电镀一层薄银(Ag)层,以原位生成AgIn₂涂层,该涂层可防止铟氧化。因此,回流过程中无需使用助焊剂去除焊料的氧化层。经过一次铟回流和三次焊球回流后,通过扫描声学显微镜(SAM)证实形成了空洞率低(4.2%)的接头。同时还获得了更好的传热能力和力学性能(提升11.4%)。此外,还发现了回流过程中一种新的AgIn₂涂层分解机制。在铟回流过程中,AgIn₂会分解为铟原子和银原子,银原子可提高焊料的润湿性和接头的剪切强度。
English Abstract
Indium (In) is the widely adopted solder thermal interface materials (TIM1) for high-power central processing unit (CPU) chips, primarily because it offers improved heat dissipation performance. However, organic flux residues trapped within In solder can outgas and create a lot of voids (void rate ~35%) in In TIM1 during solder ball reflow, which limits its application in advanced ball grid array (BGA) package. In this article, to realize fluxless In reflow and obtain a low void rate In TIM1, a thin silver (Ag) layer is electroplating on a thick In TIM1 surface to form in situ generated AgIn2 coating, which can protect In from oxidation. Thus, flux is not required to remove the oxide layer of solder during reflow. After an In reflow and solder ball reflow for three times, a low void rate (4.2%) joint is produced confirmed by a scanning acoustic microscope (SAM). Better heat transfer capability and mechanical property (+11.4%) are also obtained. A novel AgIn2 coating decomposition mechanism during reflow is also found. During In reflow, AgIn2 would decompose into In and Ag atoms, and the Ag atoms could increase the wettability of solder and shear strength of the joint.
S
SunView 深度解读
从阳光电源的业务视角来看,这项铟基无助焊剂热界面材料技术具有重要的应用价值。在光伏逆变器和储能系统中,功率半导体器件(如IGBT、SiC MOSFET)的散热性能直接影响系统的可靠性和功率密度。随着我们产品向更高功率密度和更严苛环境应用发展,传统TIM材料的空洞问题(35%空洞率)严重制约了散热效率和长期可靠性。
该技术通过电镀银层形成AgIn₂涂层,实现无助焊剂回流,将空洞率降至4.2%,这对我们的产品开发具有三方面价值:首先,显著提升的热传导性能可支持更高的功率密度设计,这对于集中式逆变器和大型储能变流器至关重要;其次,机械强度提升11.4%增强了抗振动和热循环能力,这在户外光伏电站和移动储能应用中尤为关键;第三,无助焊剂工艺避免了有机物残留的长期老化问题,符合25年以上使用寿命的行业要求。
从技术成熟度看,该技术已完成材料机理验证和工艺可行性研究,但距离规模化应用仍需解决成本控制和工艺稳定性问题。铟和银的材料成本较高,需评估在不同功率等级产品中的经济性。建议我们的研发团队关注以下方向:一是与供应链合作开发适用于大面积功率模块的电镀工艺;二是在新一代SiC模块封装中进行试验验证;三是评估该技术与我们现有的液冷散热系统的协同效应,为下一代高功率密度产品建立技术储备。