← 返回
电动汽车驱动
★ 5.0
用于电子互连的Cu-Sn纳米复合中间层自蔓延放热反应键合
Self-Propagating Exothermic Reactive Bonding With Cu–Sn Nanocomposite Interlayer for Electronic Interconnects
| 作者 | Han Jiang · Changqing Liu · Shuibao Liang · Zhaoxia Zhou · Liguo Zhao |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年5月 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 自蔓延放热反应键合 Cu - Sn纳米复合中间层 孔隙率 焊料渗出 剪切强度 |
语言:
中文摘要
摘要:堆叠多个组件是电力电子集成的关键技术,需通过可靠的键合技术来实现。自蔓延放热反应(SPER)键合因其对组件的热影响和干预极小,在微电子互连领域颇具吸引力。然而,高孔隙率和焊料渗出等相关问题限制了其进一步应用。本文制备了一种独特的铜 - 锡纳米复合中间层(Cu - Sn NI),该中间层由包裹着铜纳米线阵列的锡基体组成,通过引发和燃烧铝/镍纳米箔,用作铜 - 铜 SPER 键合的中介。为作对比,还电镀了相同厚度的锡中间层,在相同条件下进行 SPER 键合。对两种键合结构的微观结构和机械完整性进行了研究。结果表明,在相同条件下,使用 Cu - Sn NI 形成的互连结构比使用锡中间层的互连结构孔隙率显著降低、焊料渗出减少且剪切强度更高。尽管两种情况均表明,提高预热温度和压力可改善互连结构的键合质量,但显然,嵌入锡基体中的铜纳米线阵列在 SPER 键合过程中保持固态,起到“支架”作用,限制了熔融锡的流动,从而使微孔分布更均匀,孔隙率大幅降低,焊料渗出也最少。
English Abstract
Stacking multiple components is a crucial technique for integrating power electronics, achieved through reliable bonding techniques. Self-propagating exothermic reactive (SPER) bonding has become attractive for microelectronic interconnections, due to its minimal heat excursion and interventions to components. However, the associated issues of high porosity and solder bleeding undermine its further exploitation. In this article, a unique Cu-Sn nanocomposite interlayer (Cu-Sn NI) consisting of an Sn matrix embraced with Cu nanowire array, was prepared to act as an intermediary for Cu-Cu SPER bonding through initiation and combustion of Al/Ni nanofoils. For comparison, a Sn interlayer of the same thickness was also electroplated for SPER bonding under the same conditions. Both bonded structures were examined in terms of their microstructures and mechanical integrity. The interconnects formed with Cu-Sn NI exhibited significantly lower porosity, less solder bleeding, and higher shear strength than those with Sn interlayer under the same conditions, although both cases demonstrated that the bonding quality of the interconnects could be improved by increasing preheat temperature and pressure. It was evident that the Cu nanowire array embedded in the Sn matrix remained the solid state, serving as a “scaffold” and confined the flow of molten Sn during SPER bonding, hence leading to the more evenly distributed microvoids with much reduced porosity as well as the least solder bleeding.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于Cu-Sn纳米复合中间层的自蔓延放热反应键合技术对我们的核心产品具有重要的战略价值。在光伏逆变器和储能系统中,功率半导体模块的可靠互连是影响系统寿命和性能的关键因素,特别是在高功率密度和极端工况下。
该技术的核心优势在于通过铜纳米线阵列构建"支架"结构,有效抑制了传统SPER键合中的高孔隙率和焊料溢出问题。这对我们的产品意义重大:首先,更低的孔隙率意味着更优异的热传导性能和电气可靠性,这直接关系到IGBT、SiC等功率器件的散热效率和长期稳定性;其次,最小化的热影响区域使得该技术特别适合我们正在推进的高度集成化封装方案,能够在不损伤温度敏感元件的前提下实现多层堆叠互连。
从技术成熟度评估,该技术仍处于实验室阶段,向工业化应用转化面临几个挑战:纳米线阵列的规模化制备成本、工艺一致性控制、以及与现有SMT产线的兼容性。但其展现的高剪切强度和低缺陷率为解决大电流、高可靠性互连提供了新思路。
建议我们的研发团队关注以下机遇:一是将该技术应用于新一代碳化硅模块的封装,提升200℃以上高温工况的可靠性;二是探索在储能系统功率模块中的应用,延长产品使用寿命;三是评估与我们现有的银烧结等先进封装技术的协同潜力,形成差异化的技术组合方案。