← 返回
电动汽车驱动
★ 5.0
相变材料作为具有瞬态热负荷的电力电子模块的热缓冲材料
Phase change materials as thermal buffers for power electronics modules with transient heat loads
| 作者 | Meghavin Bhatasan · Amy Marie Marconne |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 343 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Designed architectures to integrate phase change materials within power electronics. |
语言:
中文摘要
摘要 由于功率密度不断提高以及功率分布日益动态化,热管理在电力电子模块中正发挥着越来越关键的作用,尤其是在汽车应用领域。相变材料(PCM)已成为这些模块中有效热管理的一种有前景的解决方案。然而,目前对于使用PCM时这些模块的热行为理解仍存在不足,特别是在考虑实际器件几何结构和功率分布方面。本文评估了包含基于相变材料的热能存储(TES)的新模块架构相对于传统架构的热性能。我们基于驾驶循环提取出真实的瞬态热负荷条件进行分析,并采用三个性能指标进行全面的性能比较:平均时间最大温升、最大温升速率以及瞬态温度响应的标准差。不同架构在各项性能指标之间存在权衡关系。与单侧冷却(SSC)架构相比,在器件两侧集成液冷(即双侧冷却(DSC))显著降低了整体运行温度(无论是否集成TES)。根据不同的驾驶循环和配置,DSC架构可使温度最多降低26%。集成热能存储可使热解决方案对瞬态驾驶循环更具响应性。具体而言,在发热芯片上直接添加铜/PCM复合TES的同时保持单侧液冷路径,能够最小化从热点到TES的热阻路径。这种SSC+TES构型有效地充当了热冲击吸收器和温度稳定器,与基准DSC架构相比,其最大温度尖峰最多可抑制33%,温度波动最多可稳定32%(而相对于传统SSC架构,这两项指标最多可降低约65%)。不同的驾驶循环从TES中获益的程度各不相同。在启停式驾驶循环中,带TES的SSC架构被证明在管理热负荷方面非常有效,能够持续降低由激烈驾驶工况引起的热峰值。除了改善热管理之外,集成PCM-TES还能够回收电力电子模块产生的废热。该废热可用于乘员舱加热或电池预热,从而减少电池额外消耗的能量。
English Abstract
Abstract Due to increasing power densities and dynamic power profiles, thermal management plays an increasingly crucial role in power electronics modules, especially for automotive applications. Phase change materials (PCMs) have emerged as a promising option for effective thermal management in these modules. However, there is a gap in understanding the thermal behavior of these modules when using PCMs, specifically in considering realistic device geometries, and power profiles. In this paper, we evaluate the thermal performance of new module architectures that include PCM-based thermal energy storage (TES) in comparison to conventional architectures. We analyze the thermal performance under realistic transient heat loads derived from drive cycles and utilize three performance metrics for holistic performance comparison: the time-averaged maximum temperature rise, the maximum rate of temperature rise, and the standard deviation of the transient temperature response. There are trade-offs between the performance metrics for different architectures. Integrating liquid cooling on both sides of the device ( i.e. , double-side cooled (DSC)) demonstrated significant reductions in the overall operating temperature (both with and without integrated TES) compared to the single-side cooled (SSC) architectures. Depending on the drive cycle and configuration, the DSC architecture can lead to up to a 26% decrease. Integrating thermal energy storage can lead to a thermal solution responsive to transient drive cycles. Specifically, adding a composite copper/PCM TES directly on the heat-generating die while maintaining the single-sided liquid cooling path minimizes the thermal resistance pathway from the hot spot to the TES. This SSC+TES configuration functions effectively as a thermal shock absorber and temperature stabilizer suppressing the maximum temperature spike by up to 33% and stabilizing temperature fluctuations by up to 32% compared to the baseline DSC architecture (and reducing each of these metrics by up to ∼ 65% compared to the conventional SSC architecture). Different drive cycles benefit from TES to various degrees. The SSC with TES proved highly effective in managing thermal loads in the stop-and-go drive cycles, consistently reducing thermal peaks resulting from aggressive driving conditions. Beyond improved thermal management, integrating a PCM-TES also enables the recovery of waste heat from power electronics modules. This waste heat can be utilized for cabin heating or battery warming, thereby decreasing additional energy drawn from the battery.
S
SunView 深度解读
该相变材料热管理技术对阳光电源电动汽车驱动产品线具有重要价值。针对OBC充电机、电机驱动器等功率模块,PCM热缓冲可有效应对瞬态热冲击,抑制温度峰值达33%。双面冷却+铜基复合PCM架构可优化SiC/GaN器件散热设计,提升功率密度。该技术还可回收废热用于电池预热,降低能耗。建议在ST系列PCS和充电桩模块中验证PCM集成方案,提升动态工况下的热稳定性和系统可靠性。