← 返回
Ka波段平板行波管互作用电路中流体与热分析的研究
Investigation of Fluid and Thermal Analysis in the Interaction Circuit for Ka-Band Sheet Beam Traveling Wave Tube
| 作者 | Binyang Han · Wei Jiang · Chaoxuan Lu · Boxin Dai · Jianwei Zhou · Hongyu Chen |
| 期刊 | IEEE Transactions on Electron Devices |
| 出版日期 | 2025年7月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | sheet束行波管 电子拦截 热管理 嵌入式散热单元 温度降低 |
语言:
中文摘要
实现平板电子束在互作用电路中的理想传输仍是平板行波管(SB-TWT)的关键挑战。粒子模拟表明,电子拦截主要集中在电路末端,导致局部高热流密度,引发温度骤升(>350°C)及真空退化。本文提出一种用于Ka波段SB-TWT的新型嵌入式散热单元(EHSU),结合交错栅格结构与边界层抑制技术以缓解局部过热。构建了该散热单元的热阻网络模型并分析其热-流特性,结果显示最高温度降低约40%。样机实验表明,在3 kW平均功率下可长期稳定运行,钛泵电流(Ti-current)在一小时内稳定于约60 nA。
English Abstract
Achieving perfect sheet beam transmission through the interaction circuit remains a critical challenge in the sheet beam traveling wave tube (SB-TWT). Particle-in-cell (PIC) simulations reveal that electron interception predominantly concentrates at the terminal region of the interaction circuit, generating highly localized heat fluxes. This nonuniform power density induces temperature spikes ( 350~^ C) and vacuum degradation due to outgassing, necessitating advanced thermal management strategies. This article proposes a novel embedded heat sink unit (EHSU) for Ka-band SB-TWTs, which integrates a staggered grid structure of the interaction circuit and boundary layer suppression to address localized overheating. A model of the heat sink unit, as well as its thermal resistance network was constructed and analyzed for its thermal and fluid behavior. The EHSU framework resulted in a maximum temperature reduction of about 40%. The prototype was fabricated, and the hot test showed it operated stably for long periods of time at an average power of 3 kW. The titanium pump current (Ti-current) was stabilized at approximately 60 nA for over an hour.
S
SunView 深度解读
该Ka波段行波管的热管理技术对阳光电源功率器件散热设计具有重要借鉴价值。研究中提出的嵌入式散热单元(EHSU)结合交错栅格结构与边界层抑制技术,可降温40%,这一思路可应用于ST系列储能变流器和SG系列光伏逆变器的SiC/GaN功率模块散热优化。特别是针对局部高热流密度问题的热阻网络建模方法,可用于PowerTitan大型储能系统的IGBT模块热设计,提升3kW以上大功率场景的长期稳定性。该研究的流体-热耦合分析技术对充电桩大功率模块的散热结构优化及智能热管理策略开发具有直接指导意义,有助于提升产品可靠性和功率密度。