← 返回
离网型混合可再生能源系统的多准则决策与不确定性分析——以海岛社区为例
Multi-criteria decision-making and uncertainty analyses of off-grid hybrid renewable energy systems for an island community
| 作者 | Dibyendu Roya · Hadi Taghavifar · Kumar Vijayalakshmi Shivaprasad · Yaodong Wanga · Barun K.Das · Anthony Paul Roskilly |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 343 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | The optimal [energy system](https://www.sciencedirect.com/topics/engineering/energy-systems "Learn more about energy system from ScienceDirect's AI-generated Topic Pages") has been modelled for a remote island community. |
语言:
中文摘要
摘要 本研究探讨了为偏远海岛社区设计的先进混合可再生能源系统配置。这些配置集成了多种技术,包括风力涡轮机、光伏板、燃料电池、柴油发电机、蓄电池、逆变器、电解槽和氢气储存罐,从而实现能源生产、存储与管理的协同化方法。系统产生的多余电能被用于电池充电和绿色氢气生产,增强了系统的灵活性与韧性。对各类系统配置进行了详细的经济技术与环境评估。此外,采用基于理想解相似度排序法(Technique for Order of Preference by Similarity to Ideal Solution)的多准则决策框架,识别出最优配置方案。表现最佳的配置即系统A,其相对贴近度达到最高的0.8877。同时,通过蒙特卡洛模拟开展了不确定性分析,以评估满足能源需求过程中相关的经济风险与不确定性。研究结果表明,提高总电力负荷比例可显著降低平准化度电成本;而资本回收因子上升则导致平准化度电成本逐步增加,范围介于0.154至0.197美元/千瓦时之间。不确定性分析进一步揭示,在所有系统组件中,通用锅炉和燃料电池对净现值成本的影响最大,影响因子分别为0.57和0.49。
English Abstract
Abstract This study examines advanced hybrid renewable energy system configurations designed for a remote island community. The configurations integrate multiple technologies, including wind turbines, photovoltaic panels, fuel cells, diesel generators, batteries, converters, electrolyzers, and hydrogen storage tanks, enabling a synergetic approach to energy generation, storage, and management. Excess electricity produced from the systems is utilized for battery charging and green hydrogen production, enhancing system flexibility and resilience. A detailed techno-economic and environmental assessment of the configurations was performed. Furthermore, the Technique for Order of Preference by Similarity to Ideal Solution based multicriteria decision-making framework was employed to identify the optimal configuration. The best-performing configuration, System A, achieved the highest relative closeness value of 0.8877. Additionally, an uncertainty analysis using Monte Carlo simulations was conducted to assess economic risks and uncertainties associated with meeting energy demand. The findings indicate that increasing the total electric load percentage significantly reduces the levelized cost of energy, while a rise in the capital recovery factor results in an incremental levelized cost of energy, ranging from 0.154 to 0.197 $/kWh. The uncertainty analysis reveals that the Generic boiler and fuel cell have the highest net present cost impact, with factors of 0.57 and 0.49, respectively, among the system components.
S
SunView 深度解读
该混合可再生能源系统研究对阳光电源离网型储能解决方案具有重要参考价值。研究中的多能源协同配置(光伏+风电+储能+氢能)与我司PowerTitan储能系统、ST系列PCS及光伏逆变器产品线高度契合。TOPSIS多准则决策方法可应用于iSolarCloud平台的智能能量管理优化,特别是在海岛等离网场景中实现光储氢一体化调度。研究揭示的LCOE成本敏感性分析为我司储能系统经济性优化提供量化依据,蒙特卡洛不确定性分析方法可集成到预测性维护算法中,提升系统可靠性与投资回报预测精度。