← 返回
储能系统技术 储能系统 ★ 5.0

基于多孔泡沫Ni/Al2O3催化剂的千瓦级太阳能驱动甲烷碳循环重整性能评估

Performance evaluation of solar-driven methane carbon cyclic reforming using porous foam Ni/Al2O3 catalysts on a kWth scale prototype

作者 Shiying Yang · Lixinyu Meia · Yixin Weng · Fan Jiao · Qibin Liua
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 343 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Solar MCCR is achieved using porous foam catalyst for the first time in kWth scale prototype.
语言:

中文摘要

摘要 太阳能驱动的甲烷干重整(DMR)为通过化学燃料生产实现可持续太阳能储存并同时减少温室气体排放提供了一条有前景的技术路径。然而,其实际应用受到积碳导致催化剂失活以及合成气利用受限的制约。为克服这些局限性,本文提出一种创新性的分步过程——太阳能驱动甲烷碳循环重整(MCCR),该过程将DMR解耦为催化甲烷分解和逆布多瓦反应两个步骤,从而实现氢气与一氧化碳的分离生产,构建更具吸引力的太阳能到燃料转化过程。该方法的可行性首先通过100次成功的热重测试循环得到初步验证,结果表明其具有卓越的除碳能力,碳去除率高达99.9%。随后,采用自主研发的多孔泡沫催化剂,首次在千瓦热功率(kWth)尺度上实现了太阳能驱动MCCR的示范运行,在近6小时内的20个稳定循环中,分别达到了29.17%的峰值和24.55%的平均太阳能到燃料转化效率。上述结果展示了MCCR在可扩展的太阳能燃料生产方面的潜力,并为应对当前能源挑战提供了可行的解决方案。

English Abstract

Abstract Solar-driven dry methane reforming (DMR) presents a promising route for sustainable solar energy storage through chemical fuel production while mitigating greenhouse gas emissions. However, its practical application is hindered by catalyst deactivation from carbon deposition and constrained syngas utilization. To address these limitations, we propose solar methane carbon cyclic reforming (MCCR), an innovative stepwise process that decouples DMR into the catalytic methane decomposition and the reverse Boudouard reactions, enabling separate H 2 and CO production and realizing a more attractive solar to fuel conversion process. The method’s feasibility is initially validated through 100 successful thermogravimetric test cycles, demonstrating exceptional carbon elimination capability with a 99.9 % carbon removal ratio. Subsequently, the first kW th scale demonstration of solar-driven MCCR using self-developed porous foam catalyst is achieved, attaining peak and average solar-to-fuel efficiencies of 29.17 % and 24.55 % respectively across 20 stable cycles in nearly 6 h. These findings demonstrate MCCR’s potential for scalable solar fuel production and offer a viable solution to contemporary energy challenges.
S

SunView 深度解读

该太阳能驱动甲烷碳循环重整技术为阳光电源储能系统开辟了化学储能新路径。其分步制氢制CO的创新工艺可与ST系列PCS及PowerTitan储能系统形成互补,实现电化学储能与化学燃料储能的协同。24.55%的平均太阳能转化效率及99.9%碳消除率展现出色稳定性,可启发iSolarCloud平台开发光伏制氢-储能一体化解决方案,拓展可再生能源多元化存储应用场景,助力碳中和目标实现。