← 返回
一种新型等容-等压放电压缩CO₂储能系统的动态特性研究
Investigation on dynamic characteristics of a novel isochoric-isobaric discharging compressed CO2 energy storage system
| 作者 | Zhen Hea · Xiaoxiao Xua · Yunying Haoa · Yongfang Huang · Shijie Zhang · Chuang Wua |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 343 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A novel isobaric discharging compressed CO2[energy storage system](https://www.sciencedirect.com/topics/engineering/energy-storage-system "Learn more about energy storage system from ScienceDirect's AI-generated Topic Pages") is proposed. |
语言:
中文摘要
摘要 压缩CO₂储能(CCES)被广泛认为是大规模可再生能源并网最具前景的技术之一。然而,在其放电过程中,高压储罐内持续的压力下降会导致透平偏离设计工况运行,从而降低功率输出。为解决这一问题,本文建立了10 MW级等容-等压放电压缩CO₂储能系统(IID-CCES)的动态模型。通过利用CO₂在拟临界区剧烈变化的热物理性质,提出了一种适用于等容与等压条件下的高压液态储罐等压放电模型。该储罐模型通过回收系统内部的低品位能量,精确控制高压液态储罐的加热过程,动态补偿因工作流体流出所引起的压力下降,实现等压放电过程。结果表明,在典型设计工况下,所提出的IID-CCES系统往返效率达到64.04%,储能密度为0.18 kW·h·m⁻³。在接近拟临界点时,微小的温度升高即可有效维持高压液态储罐内的等压状态;而远离拟临界点时,继续加热对维持等压的效果显著减弱,系统输出功率大幅下降。与非等压放电过程相比,等压放电过程的往返效率提高了约8.32%,这主要归因于高压液态储罐出口压力是否保持恒定。本研究提出的等压放电方案为加速大规模CCES系统的商业化提供了技术路径。
English Abstract
Abstract Compressed CO 2 Energy Storage (CCES) is widely considered one of the most promising technologies for large-scale renewable energy grid integration. However, during its discharging process, the continuous pressure reduction in the high-pressure storage tank causes turbine deviation from the design operating point, reducing power output. To address this issue, a dynamic model of a 10 MW isochoric-isobaric discharging compressed CO 2 energy storage system (IID-CCES) is established. By utilizing the dramatic thermophysical property variations of CO 2 in the pseudo-critical region, propose an isobaric discharging model for the high-pressure liquid storage tank applicable under isochoric and isobaric conditions. This tank model precisely controls the heating process of the high-pressure liquid storage tank by recovering low-grade energy within the system, dynamically compensating for the pressure drop caused by the outflow of the working fluid, achieving isobaric discharging process. Results show that the proposed IID-CCES system achieves a round trip efficiency of 64.04 % and an energy storage density of 0.18 kW·h·m −3 under typical design conditions. Near the pseudo-critical point, a slight temperature increase can effectively maintain isobaric in high-pressure liquid storage tank, whereas away from the pseudo-critical point, continued heating has reduced effectiveness in maintaining isobaric, and the system output power drops substantially. Compared with the non-isobaric discharging process, a round trip efficiency of the isobaric discharging process is improved by approximately 8.32 %, which is primarily due to whether the outlet pressure of the high-pressure liquid storage tank is maintained constant. The isobaric discharging solution proposed in this study offers a technical pathway toward accelerating commercialization of large-scale CCES systems.
S
SunView 深度解读
该CO2压缩储能技术为阳光电源大规模储能系统提供创新思路。其等压放电控制策略可借鉴至PowerTitan储能系统的能量管理优化中,通过精确控制放电过程维持功率稳定输出。64.04%的往返效率与ST系列PCS的高效转换特性形成互补,特别是在新能源并网场景下,该技术的动态补偿机制可启发iSolarCloud平台开发更智能的储能调度算法,提升系统在压力/温度波动工况下的适应性,为阳光电源拓展液态介质储能技术路线提供参考价值。