← 返回
电动汽车驱动 模型预测控制MPC ★ 5.0

用于燃料电池混合动力汽车的三端口变换器有限控制集模型预测电流控制

Finite Control Set Model Predictive Current Control (FCS-MPCC) of Three-Port Converter for Fuel Cell Hybrid Electric Vehicles

作者 Alonso Lizana · Javier Pereda · Felipe Rubio · Felix Rojas
期刊 IEEE Transactions on Vehicular Technology
出版日期 2024年10月
技术分类 电动汽车驱动
技术标签 模型预测控制MPC
相关度评分 ★★★★★ 5.0 / 5.0
关键词 燃料电池混合动力汽车 多端口功率转换器 三端口转换器 多变量最优控制 耦合电感
语言:

中文摘要

燃料电池混合动力汽车(FCEVs)在重载及长续航车辆中具有应用前景,但传统架构需多个变换器协调燃料电池、电池/超级电容与电机间的能量分配,导致系统复杂且损耗增加。本文提出一种仅含6个半导体器件的单级三端口变换器(TPC),集成燃料电池、电池与交流电机的能量管理。采用多变量最优控制策略——有限控制集模型预测电流控制(FCS-MPCC),实现多源功率协同调控与电机驱动。通过定制耦合电感替代原有三个独立电感,有效抑制交流环流,降低电流幅值约20%,提升系统效率与功率密度。实验基于0.5kW样机及城市工况循环验证了该系统的动态响应性能与控制有效性。

English Abstract

Fuel cell hybrid electric vehicles (FCEVs) are considered an appealing option for heavy-duty and long-distance vehicles. However, they require the use of multiple power converters to manage power distribution among the fuel cell, battery or ultracapacitor, and AC motor, leading to increased power losses and a more complex system. To overcome this challenge, multi-port power converters have been proposed to combine two power sources and the AC motor into one conversion stage, boosting overall efficiency and power density in hybrid powertrains. However, these converters still rely on a high number of semiconductors and involve complex control systems. This paper introduces a three-port converter (TPC) for FCHEVs, using only one power stage with 6 semiconductors, achieving high performance control of an ac motor, a fuel cell and a battery. A multivariable optimal control (Finite-Control-Set Model Predictive Current Control) manages the power flows between the energy sources and drives the motor simultaneously. Additionally, the performance of the multiport converter is improved by replacing its three inductors with a custom coupled inductor designed to reduce circulating AC currents. This innovation contributes to improved efficiency and overall functionality of the FCHEV system. The proposed system was validated through an 0.5kW experimental test bench and simulations of an urban driving cycle. The system controlled the multiple variables of the hybrid system with proper operation and fast dynamics, meanwhile the coupled inductor decreases the current magnitude in 20 % compared to the non-coupled configuration.
S

SunView 深度解读

该三端口变换器的FCS-MPCC控制技术对阳光电源车载动力系统产品线具有重要参考价值。其单级6开关拓扑实现燃料电池、电池与电机的集成控制,可直接应用于阳光电源OBC充电机及电机驱动系统的架构优化,减少功率级数降低成本。定制耦合电感抑制环流的设计思路可借鉴至ST储能变流器的多端口DC/DC模块,提升功率密度。多变量模型预测控制策略与阳光电源在构网型GFM控制中的多目标优化经验契合,可拓展至储能系统多源协同场景。实验验证的动态响应性能为氢能-储能混合系统开发提供技术储备,符合公司在新能源汽车及多能互补领域的战略布局。