← 返回
光伏发电技术 ★ 5.0

基于自适应虚拟阻抗控制的光伏集成电气化铁路系统稳定性提升方法

Stability Enhancement Method Based on Adaptive Virtual Impedance Control for a PV-Integrated Electrified Railway System

作者 Haidong Tao · Wenqi Lu · Haitao Hu · Xiaojuan Zhu · Zhengyou He
期刊 IEEE Transactions on Vehicular Technology
出版日期 2024年9月
技术分类 光伏发电技术
相关度评分 ★★★★★ 5.0 / 5.0
关键词 光伏系统 牵引供电系统 虚拟阻抗控制 综合建模方法 系统稳定性
语言:

中文摘要

将光伏(PV)系统集成到电气化铁路中具有广阔的前景。然而,随着光伏系统的接入,牵引供电系统(TPSS)已转变为包含交直流变换器的多源多负载复杂混合系统。传统为车网系统设计的小信号稳定性增强方法难以应用于多变换器配置。为应对这一挑战,本文提出了一种具有自适应阻尼增益的虚拟阻抗控制方法。该阻尼增益会随车辆直流电压的波动自适应调整。随着波动减小,阻尼增益降低,从而减少对控制系统动态特性的影响。这种自适应控制方法拓展了虚拟阻抗控制的适用范围。此外,本文还提供了一种针对该混合系统的综合建模方法,涵盖了光伏直流阻抗、铁路功率调节器(RPC)的交直流阻抗以及车辆交流阻抗等组件。建模过程中考虑了交直流阻抗耦合。该方法解决了分析光伏与RPC的直流阻抗以及车辆与RPC的交流阻抗之间耦合关系的难题。在此基础上,定量分析了电路和控制参数对系统稳定性的影响以及所提出控制策略的有效性。通过搭建硬件在环测试平台,验证了所提出的建模和控制方法的有效性。

English Abstract

The integration of photovoltaic (PV) system into electrified railways holds promising prospects. However, with the integration of PVs, traction power supply system (TPSS) has transformed into complex hybrid system with multiple sources and loads, including both AC and DC converters. Traditional small-signal stability enhancement methods designed for vehicle-network system are challenging to apply in multiple converter configurations. To address this challenge, virtual impedance control with adaptive damping gain is proposed. The damping gain adaptively adjusts with the fluctuation of the vehicle DC voltage. The damping gain decreases as the fluctuation decreases, which reduces the impact on the dynamic characteristics of the control system. This adaptive control approach extends the applicability of virtual impedance control. In addition, a comprehensive modeling method for the hybrid system is provided, including components such as the DC impedance of the PV, the AC and DC impedances of the railway power conditioner (RPC), and the AC impedance of the vehicle. AC–DC impedance coupling is considered in the modeling process. This approach solves the difficulties in analyzing the coupling between the DC impedances of the PV and RPC, as well as the AC impedances of the vehicle and RPC. On this basis, the impacts of the circuit and control parameters on system stability, as well as the effectiveness of the proposed control strategy, are quantitatively analyzed. The proposed modeling and control methods are validated through the construction of a hardware-in-the-loop test platform.
S

SunView 深度解读

从阳光电源的业务视角来看,这项光伏与电气化铁路集成的稳定性增强技术具有重要战略价值。该研究针对光伏系统接入牵引供电系统后形成的多源多负荷混合系统稳定性问题,提出了自适应虚拟阻抗控制方法,这与我司在光伏逆变器领域的核心技术方向高度契合。

技术价值方面,该方法通过阻尼增益随车辆直流电压波动自适应调节,有效解决了传统小信号稳定性控制在多变流器配置下的局限性。这为我司开发面向轨道交通应用的专用光伏逆变器提供了理论支撑。特别是论文提出的交直流阻抗耦合建模方法,能够精准分析光伏系统与铁路功率调节器(RPC)的直流阻抗耦合、以及车辆与RPC的交流阻抗耦合,这对优化我司逆变器控制算法、提升系统兼容性具有直接指导意义。

市场机遇层面,随着"双碳"目标推进,轨道交通电气化与清洁能源融合已成趋势。该技术的硬件在环测试验证表明其工程可行性较高,适合快速产品化。阳光电源可将此技术整合到"光储充"一体化解决方案中,开拓铁路沿线分布式光伏并网、牵引站储能调峰等新兴市场。

技术挑战主要在于:不同铁路系统的供电制式差异需要控制策略的深度定制化;复杂电磁环境下的长期可靠性验证;以及与既有铁路保护系统的协调配合。建议我司组建专项团队,结合实际工程场景开展中试,同时加强与铁路设计院所的产学研合作,抢占这一细分领域的技术制高点。