← 返回
电动汽车驱动
★ 4.0
基于多群体多目标灰狼优化器的电动汽车热管理系统多目标优化
Many-objective optimization for thermal management system of electric vehicle based on many-population many-objective grey wolf optimizer
| 作者 | Jianqin Fuac · Hao Lia · Guanjie Zhang · Yaorui Shena · Jianxiong Liuc · Xilei Sun |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 344 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Thermal-management performance of electric vehicle was evaluated through XGBoost. |
语言:
中文摘要
摘要 优化热管理系统的设计参数对于提升电动汽车的整体能效和动态性能至关重要。本研究构建了一个包含详细热管理系统的高保真车辆仿真模型,并采用正交实验设计方法系统性地探索设计空间。在此基础上,利用极端梯度提升算法(extreme gradient boosting)建立了高精度的代理模型,并提出了一种多群体多目标灰狼优化器以应对复杂多维的帕累托前沿求解问题。结果表明,极端梯度提升模型在所有优化目标上的平均预测误差均低于3%,表现出较强的泛化能力。与传统基准算法相比,所提出的多群体多目标灰狼优化器展现出更优的性能,能够快速收敛并获得分布良好的解集,这一点通过最优超体积和间距指标得到了验证。最终优化方案使压缩机功耗降低了27.08%,性能系数提高了43.62%,续航里程延长了5.23%,且相对于高保真仿真的验证误差保持在2%以下。对最终优化解的性能分析表明,优化压缩机排量、增大制冷剂管路直径以及精细调整换热器尺寸可显著提升系统能量效率。这些发现为理解热管理系统架构内的能量流动调控机制提供了深入的理论依据和实践指导。
English Abstract
Abstract The optimization of thermal management system design parameters is critical for enhancing overall energy efficiency and dynamic performance of electric vehicles. In this study, a high-fidelity vehicle simulation model incorporating a detailed thermal management system was constructed, and the orthogonal experimental design was employed to systematically explore design space. On this basis, a high-accuracy surrogate model was developed using extreme gradient boosting, and the many-population many-objective grey wolf optimizer was proposed to navigate the complex multi-dimensional pareto front. The results indicate that extreme gradient boosting model exhibits robust generalization capability with an average prediction error below 3% across all optimization objectives. The many-population many-objective grey wolf optimizer demonstrates superior performance compared to conventional benchmarks, achieving rapid convergence and a well-distributed solution set, as evidenced by optimal hypervolume and spacing metrics. The final optimized solution leads to a 27.08% reduction in compressor power consumption, a 43.62% increase in coefficient of performance and a 5.23% extension in driving range, with validation errors maintained below 2% relative to high-fidelity simulations. The performance analysis of final solution reveals that optimizing compressor displacement, enlarging refrigerant circuit diameters, and fine-tuning heat exchanger dimensions significantly improve energy efficiency. These findings provide in-depth insights into the energy flow regulation mechanisms within thermal management system architectures.
S
SunView 深度解读
该多目标优化技术对阳光电源电动汽车解决方案具有重要价值。研究中的热管理系统优化方法可直接应用于OBC车载充电机和电机驱动系统的热设计,通过XGBoost代理模型和灰狼优化算法实现能效提升27%以上。该技术框架可迁移至充电桩功率模块散热优化,结合阳光电源SiC器件特性,优化冷却系统参数配置。同时,多目标优化思路可融入iSolarCloud平台,为储能系统PowerTitan的热管理策略提供智能决策支持,平衡功率输出、温度控制与系统寿命等多维目标,提升产品综合竞争力。