← 返回
电动汽车驱动
★ 4.0
具有超高流速的微流体燃料电池:一种用于冷电联供应用的潜在技术
Microfluidic fuel cell with ultrahigh flow rates, a potential technology for combined cooling and power applications
| 作者 | Hao Daia · Ehtesham Alia · Xinhai Xua · Mingming Zhang · Wending Panb · Holly Y.H.Kwok · Dennis Y.C.Leung · Michael K.H.Leung · Yifei Wanga |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 344 卷 |
| 技术分类 | 电动汽车驱动 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | Ultrahigh flow rate is employed in microfluidic fuel cell for the first time. |
语言:
中文摘要
摘要 微流体燃料电池(MFC)通常采用两种微流体电解质进行发电,该系统还可与加热系统集成以实现微流体冷却,从而形成一种冷电联供技术。为实现这一目标,需要显著提高电解质的流速,以确保较强的冷却效果。传统的MFC研究长期避免进入超高流速区域,主要是出于流动稳定性的担忧;然而,本研究首次证明,即使在高达100 mL/min(Re = 677.4)的流速下,仍可维持稳定的共层流状态,从而有效利用超高流速区域以增强冷却能力。当室温电解质以100 mL/min的流速流动时,面对5 W/cm²热负荷的加热系统表面温度可从392 °C降至82 °C,实现了79%的表面温度降低。然而,由于高效冷却导致电极区域温度仅为46.1 °C,在此超高流速条件下MFC的峰值功率密度(29.2 mW/cm²)并未达到最优。为缓解冷却与发电之间的权衡关系,通过将电极和电流收集器重新布置至靠近流道出口的高温区域,对MFC结构进行了优化。该创新使峰值功率密度提升了42%,达到41.5 mW/cm²,同时仍保持了原有的冷却性能。综上所述,本研究展示了超高流速MFC在冷电联供应用中的巨大潜力。未来将进一步致力于提升其功率输出性能。
English Abstract
Abstract Microfluidic fuel cell (MFC) generally adopts two microfluidic electrolytes for power generation, which can also be integrated with a heating system for microfluidic cooling, leading to a combined cooling and power technology. To achieve this goal, the electrolyte flow rate needs to be significant increased to guarantee strong cooling effect. Conventional MFC researches have long avoided the ultrahigh flow regime due to stability concerns, yet our work demonstrates for the first time that stable co-laminar flow can still be maintained even at a flow rate as high as 100 mL/min (Re = 677.4), effectively harnessing the ultrahigh flow regime for enhanced cooling ability. With a room-temperature electrolyte flowing at 100 mL/min, the heating system subjected to a 5 W/cm 2 heat load can be cooled from 392 to 82 °C, corresponding to 79 % reduction of its surface temperature. However, the MFC peak power density of 29.2 mW/cm 2 was not optimal under this ultrahigh flow rate due to the moderate electrode temperature of 46.1 °C originated from the efficient cooling. To mitigate this cooling-power trade-off, the MFC structure was optimized by repositioning its electrodes and current collectors to the higher temperature zone near the channel outlet. This innovation yields 42 % boost in the peak power density, reaching 41.5 mW/cm 2 , while still preserving the same cooling performance. To sum up, this study showcases the great potential of ultrahigh-flow-rate MFCs for combined cooling and power applications. In the future, more efforts will be paid to further improve its power output.
S
SunView 深度解读
该微流体燃料电池的冷热电联供技术对阳光电源电动汽车驱动系统具有重要启示。其超高流速下的热管理方案可应用于我司电机驱动器和车载充电机(OBC)的散热优化,特别是功率密度提升42%的电极布局优化思路,可借鉴至SiC/GaN功率器件的热设计中。该技术在5W/cm²热负荷下实现79%温降的能力,为充电桩和储能变流器(ST系列PCS)的液冷系统提供了冷热协同管理的新方向,有助于提升系统集成度和能效比。